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CHAPTER 1

INTRODUCTION

When a turbulent fluid interacts with a sinusoidal solid wave
spatial variations of the pressure and the shear stress occur at the
surface. If the wave is of small enough amplitude a linear response
can be expected in that the hydrodynamic quantities can be described
by single harmonics with characteristic phases and amplitudes. The
analysis for this case is, therefore, greatly simplified. The principal
theoretical problem is the determination of the Reynolds stresses close
to the surface. In previous studies by Cook [15] and Thorsness [70] it
was shown that the phase angle associated with the spatial variation of
the surface shear stress provides a particularly sensitive test of the
theory used.

The primary purpose of this thesis is to obtain surface shear stress
measurements for turbulent flow over small amplitude solid waves, over a
wide range of conditioqs and to compare these measurements in a meaningful
way.with predictions derived from various turbulence models. These
measurements provide a particularly sensitive test of current turbulence
models in the neighborhood of a solid boundary. The results find appli-
cation in understanding the generation of water waves at a gas liquid
interface.

Various attempts have been made to measure surface shear stress and
pressure profiles over a solid wavy surface. Motzfield [49], Larras and
Claria [36] and Zagustin et al. [76] measured pressure profiles. Their
measurements indicate a linear response for amplitude, ays to wavelength, A,

ratios of 2 ad/k £ 0.05. Kendall [34], who was concerned mainly with moving



waves, made a limited number of pressure and shear stress measurements

at zero wave speed. A wave of A = 4 inches and Zad/k= 0.062 was used in

this study. Sigal [65], using two geometrically similar waves with
Zad/A = 0.055 and wavelengths of 6 and 12 inches, measured both surface
shear stress and pressure profiles. Hsu and Kennedy [26] carried out a
similar set of experiments to Sigal'hsing waves of Zad/x= 0.022 and
0.044 on the wall of a pipe. In this laboratory Zilker [77] and Cook [15]
used electrochemical techniques to determine shear stress profiles over
waves with Zad/k= 0.0312, 0.05, 0.125 and 0.2 and a wavelength of

A = 2 inches. The major limitation of the above measurements, with the
exception of the shear stress measurements of Zilker and Cook, is that
they were not carried out over a large enough range of flow conditions
to be suitable for testing solutions of the momentum equations. Another
limitation is that the height of the waves was such that the appearance
of higher ordeg harmonics in the shear stress profiles made comparison
of these measurements with linear theory difficult.

Thorsness [70] and Morrisroe [48} obtained a set of shear stress
measurements using a wave surface with Zad/A= 0.012 and a wavelength,

A = 2 inches. These experiments provide the first detailed set of
measurements appropriate for testing models of the wave induced variation
of the Reynolds stress.

The analysis carried out by Thorsness indicates that for thick
boundary layers the phase angle characterizing the shear stress variation
is a unique function of a wave number, o = 2nv/ku*, made dimensionless
with the kinematic viscosity, v, and the friction velocity, u*. The
amplitude of the shear stress variation, made dimensionless using v and

u*, is found to vary linearly with a = au*/v. The ratio of this



dimensionless amplitude to a is an unique function of a. A major
limitation of the measurements of Thorsness is that they were obtained
in a range of a which was not entirely suitable to discriminate amongst
various turbulence models. Analysis suggests that the variation of the
shear stress phase angle passes through a well defined maximum and

that the prediction of this maximum should provide a sensitive test of
turbulence models. The experiments performed in this research are an
improvement over the work of Thorsness in that they covered a wide enough
range of a to determine this maximum. This was accomplished by using
the same wavelength, solid waves of A = 2 inches, and by increasing the
maximum value of u* by a factor of four.

Many turbulence models use the kinetic energy of the turbulence
fluctuations as a primary variable in estimating the Reynolds stress.
Very few measurements are available of this quantity close to a solid
surface. This lack of experimental data makes the evaluation of these
models more difficult. Therefore, additional experiments were carried
out to determine the streamwise component of the turbulent kinetic
energy at the wave surface.

The measurements of the time average shear stress and root mean
square value of the fluctuations were obtained in a rectangular channel
two inches high and twenty four inches wide. The measurements were
obtained utilizing an electrochemical technique developed in this
laboratory by Reis [57], Mitchell and Hanratty [58] and Cook [15].

This technique makes use of an electrochemical solution as the trans-
ducing medium. The solution flowed over a train of eleven waves
comprising the bottom wall of the test section. Each wave had an

amplitude of 0.01l4 inches and a wavelength of 2 inches.



The presénce of waves on the solid surface causes differences in
the turbulence properties from what would exist for turbulent flow over
a flat plate. This is due to the wave induced pressure variations and
the wave induced curvature of the streamlines. A periodic pressure
variation occurs along the wave surface due to the compression of the
streamlines at the wave crest and the rarefaction of the streamlines
at the wave trough. Experimental studies of Jones and Launder [32] and
Anderson, Kays and Moffat [3] have shown that these negative and positive
pressure gradients lead respectively to a damping and enhancement of the
turbulence. Similarly the alternating positive and negative curvature
of the streamlines can also lead to alternating enhancement and damping
of the turbulence. The problem of predicting the influence of a wavy
surface on the turbulence is further complicated in that the turbulence
does not adjust instantaneously to the change in the pressure gradient
and the streamline curvature.

Two approaches are explored to evaluate the Reynolds stress. The
first is an extension of Thorsness [70] Model D in which he applied the
ideas of Loyd, Moffat and Kays [42] mixing length theory to flow over waves.
The second is a modification of the Jones and Launder [31] K-e Model.

The advantage of the Loyd et al. mixing length approach is the simple
manner in which the effects of the pressure gradient, streamline curvature
and the relaxation can be taken into account. The disadvantage of this
approach is the ad hoc manner in which the relaxation effects are
jntroduced. The K-¢ Model avoids the arbitrary approach of introducing
relaxation phenomena by solving transport equations for the turbulence

properties which define the turbulent viscosity.



CHAPTER 2

LITERATURE

(a) Effects of Pressure Gradient and Curvature

Experiments carried out in order to understand the effects of
pressure gradient and streamline curvature on a turbulent boundary layer

have led to the development of turbulence models which have been applied

to flow over wavy surfaces. A short review of these experiments, the
models developed, and their applications is also presented.
An extensive review of momentum and thermal boundary layers subject

to pressure gradients and transpiration has been given by Kays and

/- -

Moffat [33]. Jones [28], Launder and Stinchcombe [37], Badri Narayanan
and Ramjee [4], Julien, Kays and Moffat [32], Launder and Jones [39],
Loyd, Moffat and Kays [42] and Jones and Launder [30] have measured
velocity profiles and skin friction in a turbulent boundary layer which
has been accelerated by flowing through a plane-walled convergent
channel. The interest in these flows stems from the fact that they
approach a state in which the local Reynolds number, the skin friction
and the shape factor are invariant with flow direction and therefore
constitute one of the simplest flows in which to study the effect of
pressure gradient. These flows are a special case of an equilibrium
boundary layer and are often referred to as sink flows or asymptotically
accelerated boundary layers. The strength of the acceleration is charac-
terized by the magnitude of the parameter,K, defined as U_zv(dU/dx),
where U is the local free-stream velocity and v 1is the kinematic viscosity
of the fluid.

The velocity measurements indicate that for moderate acceleration,

K=z 1x 10—6, the boundary layer remains turbulent; however, the viscous




sublayer becomes thicker in terms of the distance, y, made dimensionless
with wall parameters. The velocity profiles lie above the universal
logarithmic law of the wall. As the acceleration is increased the
deviation from logarithmic behavior becomes more evident with distinction
between the viscous sublayer and the fully turbulent region of the velocity
profiles becoming less clear. Eventually a state is reached in which a
turbulent boundary layer can no longer be sustained and the flow is said

to have undergone relaminarization.

Anderson, Kays and Moffat [3] have measured velocity profiles and
skin friction in unfavorable.pressure gradients without separation. In
contrast to accelerating flows, the velocity profiles remain logarithmic
and experience a thinning of the viscous dominated sublayer in terms of
the dimensionless distance, y.

The effect of streamline curvature on a turbulent boundary layer
has been thoroughly reviewed by Bradshaw [8] and later by Gillis et al.
(24]. Bradshaw [7] has shown that a flow subjected to mild longitudinal
curvature with a ratio of boundary layer thickness, §, tosurface curvature,
Rc,of 6/Rc= 1/300 can significantly effect the length scale distribution.
So and Mellor [66] have demonstrated that a convex surface inhibits
turbulence while a concave surface enhances it. Eskinazi and Yeh [19]
found that the wall shear stress is larger on the concave wall than on
the convex wall of a curved duct. Ellis and Joubert [18] have shown that
the width of the logarithmic region is curvature dependent. Convex
curvature causes the velocity profiles to become wake like at a lower
value of y than does concave curvature. Ramaprian and Shivaprasad [56,57]
have shown that the effects of curvature are far more significant on

the outer region of a boundary layer than on the region close to the wall.

SN W G I S v am e



Gillis et al. [24] carried out experiments to determine how a bound;ry
layer responds to strong convex curvature followed by a flat section.
The experiments show that both the shear stress in the outer part of the
boundary layer and the wall shear stress are strongly diminished on
encountering the curved surface. When the surface becomes flat again
both wall shear and shear stress profiles recover very slowly to flat
plate conditionms.

The first models of turbulent boundary layers close to a solid wall
have used Van Driest's [73] modification of Prandtl's mixing length
hypothesis. This approach, which assumes a universality of the wall
region in terms of wall parameters, fails to predict flows subject to
mild pressure gradient and streamline curvature. Various workers have
proposed modifications to the Van Driest formula to better account for
these effects.

Patankar and Spalding [53] proposed that the local value of the
shear stress rather than the wall value be used in the exponent of the
Van Driest damping function. This modification has the correct quali-
tative behavior. In favorable pressure gradients the shear stress
decreases from its value at the wall, so that this formulation does
result in a thickening of the viscous wall region. However, calculations
carried out using this formulation show that it does not produce a
large enough effect.

Launder and Jones [38], Cebeci and Smith [12], Julien et al.[32] and

Loyd etal. [42] began experimenting with the idea that the constant A in the

Van Driest mixing length model is related to the thickness of the viscous
sublayer in wall coordinates which in turn depends on the dimensionless

pressure gradient,%% . These workers deduced a functional dependency
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of A on %E— by examining a large number of equilibrium velocity profiles
subject to both positive and negative pressure gradients.

In nondimensional flows where the pressure gradient is changing
rapidly Loyd et al. [42], Julien et al. [32] and Launder and Jones {38]
have proposed that a first order lag equation be used to predict an
effective sublayer thickness, A ¢¢.

Bradshaw [7] has modified the Van Driest mixing length proposal to
account for the effect of streamline curvature on the turbulence. The
flat wall mixing length is multiplied by an empirical function built
around the curvature Richardson number. In a situation in which the
surface curvature is not constant, Bradshaw suggests that an effective radius
of curvature be computed from a first order lag equation.

Jones and Launder [29,31] abandoned the mixing length approach by
arguing that the prediction of nondimensional flows could not be achieved
with a transport hypothesis based so firmly on equilibrium notioms. They
assumed that the turbulent viscosity is the productAof the square root of
the turbulent kinetic energy and an appropriate length scale. The turbu-
lence length scale is calculated by solving transport equations for the
turbulent kinetic energy and the turbulent dissipation rate. Launder
et al. [40] have modified this model to account for streamline curvature,
by redefining the curvature Richardson number in terms of turbulence

quantities. Several workers have developed alternate higher order closure

schemes. These have been reviewed by Reynolds [59,60]

(b) Models for Flow Over Wavy Surfaces

Benjamin [6] and Miles [46] considered the wave induced flow caused

by small amplitude waves. They formulated the problem in a curvilinear



coordinate system and included the effectsof turbulence only in the
specification of the mean velocity profile.

Hussain and Reynolds [27] incorporated the effects of turbulence
on the perturbed flow. The eddy viscosity distribution is assumed to
be set up by the mean flow. The mean eddy viscosity is then assumed
to act on the perturbed velocity gradient generating a wave induced
Reynolds stress.

Other workers to examine flow over wavy surfaces include Davis [16]
and Townsend [72]. Their models have been reviewed by Thorsness [70].

Thorsness [70] formulated the problem in a curvilinear coordinate
system and investigated several turbulence models for the wave induced
Reynolds stress. Three particular models are of interest. They are
labeled as Model A, Model C, and Model D. Model A is essentially the
quasilaminar model of Benjamin described above. Model C evaluates the
wave induced Reynolds.stress by using the Van Driest mixing length model.
A wave induced eddy viscosity results because the shear stress used in
the damping function is' the local wall shear stress. Model D is an
adaptation of the mixing length model of Loyd et al. This model uses
the wave induced pressure gradient and wall shear stress in evaluating
the mixing length.

Markatos [44] solved the full nonlinear problem using a curvilinear
coordinate system. In order to avoid the difficulty of modeling the

turbulence in the viscous wall region the high Reynolds number form of

‘the Jones and Launder two equation model is matched to the logarithmic

law of the wall.
Cary et al. [11] have used the mixing length model of Loyd et al.

and the two equation model of Jones and Launder. Their study is
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primarily concerned with the investigation of a wavy surface as a
possible drag reducing device. Their analysis suggests that neither
of the two models describe flow over large amplitude waves.

Caponi et al. [10] have developed a model for laminar flow over
an arbitrarily shaped periodic surface. An orthogonal transformation
is used to map the physical domain under consideration to a rectangular
region. Because of the periodic nature of the problem, the dependent
variables are expanded in terms of Fourier series. The model sucess-
fully predicts viscous flow over both a moving liquid and solid wave
surface.

Mclean [45] has extended the laminar flow calculations of Caponi
et al. to include turbulent flow by using the mixing length model of
Loyd et al. A comparison of thistheory with the shear stress measure-
ments of Thorsness and Zilker indicates that the model successfully
predicts flow over small amplitude waves. However,in the case of

large amplitude waves the discrepancy between the theory and experiments

is more apparent.



CHAPTER 3

THEORY

In this chapter a theoretical framework for the description of
turbulent flow over a small amplitude wave surface is presented. The
problem is formulated in a boundary layer coordinate system. A number
of models for the wave induced Reynolds stresses are developed. The
results of the alternate approaches and their comparative success in
predicting the experimental results is reserved for presentation in
Chapter 6 and Chapter 7. The various numerical techniques used in

integrating the equations are presented in Chapter 5.

(a) Coordinate System and Basic Equations

The boundary layer coordinate system used in formulating the
problem is shown in Figure 3.1. The x direction is taken parallel to
the wave surface while the y axis is perpendicular to it. For con-
venience x = 0 is taken as the wave crest with the positive x axis
being in the direction of flow. The flow field is assumed to be two
dimensional.

Unless otherwise stated all the variables are made nondimensional
with respect to wall parameters. Velocities are made dimensionless
with respect to the friction velocity, n /?wa/p . Lengths are
made dimensionless with respect to v/u*, where v is the kinematic
viscosity. Pressure, stresses and the turbulent kinetic energy are

2
considered multiples of p u*”.

11

The time averaged continuity and momentum equations in the boundary

layer coordinate system with surface curvature, «, are:
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where U and V are the velocities in the x and y directions respectively.

The quantities, —u'u', -u'v' and -v'v' are the Reynolds stresses and P

is the static pressure.
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(b) Linearized Equations

The necessary conditions for the flow field to be described by a
linear form of the Navier Stokes equatiomns are that the wave amplitude
be small compared to both the wavelength and the boundary layer
thickness. These conditions are developed in Appendix A.

The time averaged velocities, U, V, the turbulent stresses, Rij’ and
the pressure gradients, 3P/9x, 9P/dy, are assumed to be the sum of a
component averaged over a wavelength at a constant value of y and a
periodic spatially varying wave induced component. The general form
of the wave induced component is afieio'x where n is a complex number
whose real and imaginary parts are at most functions of y. Thus the

velocities, stresses and pressure gradients are given by

T o el e (3.4.1)

vV = a\'}(y)eimx (3.4.2)
~ujul = Ry, = Ry, +ady, (y) e 1% (3.4.3)
g—§=§§-+a9§§(’ﬂemx (3.4.4)
%E = %’;—- + aiap(y)el™ (3.4.5)

If the equations (3.4.1)-(3.4.5) are substituted into the continuity and

momentum equations (3.1)-(3.3) and the terms of O(az) are neglected, a

system of equations which is linear in the wave induced components results.

The continuity, the x momentum and the y momentum equations are respectively

alicd +9']e** =0, (3.5)
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aliola + vU'] ™™ = ) S TR Y
90X Xy
+ a[-iop - aza + azﬁw + azy %§-+ Q'
+ 2R o + 10f_ + 2! 1el%%, (3.6)
Xy XX Xy
al ialv - azﬁz] Jlax _ 9P o
3y vy
+a[\?"—a2§—ia3fl-—;;'+f-' + R o + iof
yy vy Xy
20 iax
- R | .
@ Ry e (3.7)

The primes denote differentiation with respect to the y direction. The
continuity equation (3.5) can be satisfied by the introduction of the

stream function

y_ q
Y = J U(y)dy +aF(y)e ™ | (3.8)
(o]
with
1 oy
Gt (3.9.1)
y
and
-1 oy
vV = E;'a? (3.9.2)
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where hx and hy are the metric functions. The linearized metrics
are:

hx =1 (3.10.1)
and

2 idax

hy =1 + an"ye . (3.10.2)
Substituting equations (3.10.1) and (3.10.2) into equations (3.9.1)-
(3.9.2) and using the definition of the stream function equation (3.8),
the U and V velocities to O (a) are respectively,

U=T+ aFe®™ _ (3.11.1)
and

, iax
V = —aiaFe . (3.11.2)

The linearized momentum equations (3.6) and (3.7) can be combined
to eliminate the pressure terms in the following manner. Equation (3.6)
is multiplied by (1 + aazy'eiax) and then differentiated with respect
to y. Equation (3.7) is differentiated with respect to x and multiplied
by (-1). The resulting equations are then added. Substituting the
definitions of the velocities in terms of the stream function (3.11.1)
and (3.11.2) into the resulting equation and collecting terms of similar

order the following equations defining F(y) are obtained:

Env + i‘;{v =0, . (3.12)

y
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ia [T(F" - o’F) - U"F + o2 0]
== 202F 4 ofF + 26°T" - &PT + R , (3.13)
R = iGBE +3or.2-1i—' +dia (' -1') +0L21? + T —10L3R (3.14)
pro Xy XX Yy Xy Xy y

Equation (3.13) is similar to the well known Orr —Sommerfeld equation
used in stability calculations except for the appearance of additional
terms which arise due to the use of the curvilinear coordinate system
and due to the inclusion of the Reynolds stresses.

Solution of equations (3.12) and (3.13) requires the specification
of the Reynolds stresses and the boundary conditions. The average
velocity profile, ﬁ(y), and the average Reynolds stress, ixy(y), appearing
in equations (3.12) and (3.13) are taken to be the same as would exist if the
surface were flat. This specification is consistent with the linearization
assumption in that the leading order wave averaged terms are the same in
both a boundary layer and cartesian coordinate system. Furthermore it
is assumed that the wave averaged shear stress, t(y), does not vary in the
y direction. This implies that the wave averaged pressure gradient,

3P/9x is zero. Equation (3.12) can therefore be integrated once to yield

UM +R' = 0. (3.15)
Xy

The specification of the Reynolds stress is dealt with in the next section.

At the wave surface no slip and no penetration boundary conditions

are invoked.

F=0and F' =0 at y = 0. 13,109
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The outer boundary condition is such that the flow field far away from
the surface is unaffected by the presence of the wave. Therefore the
velocity field in the boundary layer coordinate system must be equated
to an undisturbed velocity field that would exist if the wave surface
were not present. This is accomplished in two steps. Firstly the
velocity field in the boundary layer coordinate system is transformed
into cartesian coordinates. Secondly the transformed velocity field
is then equated to a linearized velocity field in cartesian coordinates,
see Appendix B. The linearized boundary conditions for the flow far

from the wave surface are then obtained as
for large y. (3.17)

The shear stress at the surface is evaluated from the component of

the rate of strain tensor, Sxy’

ta 3 (U] L 3w
= [hx 3y [h} + h_ ax} s (3.18)

Neglecting terms of O(az) and using the surface boundary conditions

equation (3.16),
T = T(0) + a1 (0)el®® = T1(0) + aF"(0)e ™ . (3.19)

The wave induced variation of the wall shear stress is

X

at (0)el%* = aF"(0)el®* . (3.20)

The wave induced variation of the pressure at the solid surface is

found by evaluating equation (3.6) at y = 0
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ap (0™ = 22 (11 (0) + o* T (0)] 2™, (3.21)

(¢) Models for Turbulent Stresses

c.1l Constant Reynolds Stress Assumption Model A

The simplest assumption to make is the quasi-laminar assumption of
Miles and Benjamin that the effects of turbulence enter the'problem only
in the specification of the mean velocity profile U(y). In this case
R=0. A slightly different approach is taken here in that only the

fluctuating compeonent of the Reynolds stress, r is set equal to zero.

ij?

Consequently

F-=30> RN . (3.22)
xy

if the normal stresses, R__ and R__, are neglected.
XX vy

For a thick boundary layer

T = _p!
Ut = -Reo (3.23)

SO

= -32T" (3.24)

Thorsness [70] has argued that the constant stress model formulated
in a boundary layer coordinate system, which he designated as Model A,
is closely related to the assumption that the Reynolds stresses are
frozen along a streamline as discussed by Davis [16]. 1In a cartesian
coordinate system the constant stress assumption reduces to the quasi-

laminar model of Miles and Benjamin.
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A major shortcoming of the constant stress model (Model A) is
that there is no interaction between the wave and the turbulence. Several
models are now explored which take this interaction into account. These
models are all based on the assumption that the Reynolds stresses are

described by a Newtonian constitutive equation of the form

1 2 t
Rij =-34 5ij + ZSij (3.25)

where q2 is the turbulent kinetic energy and Ve is a turbulent or eddy

viscosity and Sij is the rate of strain tensor defined in Appendix C.
Since turbulent stresses are important only close to the wave

surface, use is made of the boundary layer assumption that the normal

stresses,Rxx and Ryy,can be neglected. Here the only component con-

tributing to the Reynolds stress tensor is ny where

vt
Ry =5 254 (3.26)

In order to account for the spatial variation of the turbulence properties
along the wave surface the concept of a wave induced eddy viscosity is

introduced

(3.27)

Decomposing the rate of strain Sxy into its wave averaged and fluctuating

components

5§ &S +as e (3.28)
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the Reynolds stress,ny,is related to the eddy viscosity and the rate

of strain as follows

v = At . iox
R _=— 258 +a|— 28§ + :
Xy v Xy v

The average and wave induced rates of strain are respectively

2§, =gyt
Xy

2a §xyemx = a (F" + az F - azﬁ—)eia

X

The Reynolds stress term, #, equation (3-14), can now be written as

— — ~

v v
R= 3a2 L@ +a2 —{,E(F"-i-az

F-azﬁ)~+—£ u'
v v

t A L
+| — (F" 4+ a F—aU)+—tU'
\Y v

Before equation (3.12) to (3.14) can be solved for the fluctuating f

the eddy viscosity must be specified. Two approaches are explored.

¢c.2 Zero Equation Models

At this level of turbulence modeling the Prandtl mixing length

hypothesis is frequently used.

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

low
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| (3.34)

where £ is "the mixing length." Close to a solid boundary where

viscous effects are important several workers have adopted the Van Driest

mixing length model
L, = Ky {1 - exp (—Dm)] (3.35)

where k is the Von Karman constant and,Dm,isa damping function introduced
to account for the effects of the wall in suppressing turbulent transport.
Van Driest's original proposal was that Dm = %Ti/z where a value of
A=A =26 is suggested for flow over a flat plate. Thorsness [70] has
applied this formulation of the Van Driest mixing length hypothesis, which
he labeled as Model C, to flow over small amplitude waves. This formu-
lation is not expected to be correct for flow over wavy surfaces because
the presence of pressure gradients causes a large variation of T with
distance from the boundary and a drastic change in the production of
turbulence in the wall region. This can be taken into account by redefin-

ing the damping function as

b, =%y (3.36)
A

where the local shear stress, t(y), is used instead of the value at the

surface,rw. The local shear stress is the sum of viscous and turbulent

stresses

tT=25S5_+—2S8 o (3.37)

&
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For small amplitude waves the local shear stress can be separated
into an average and a wave induced component. . The average shear stress

is simply equal to its value at the surface

v
?=[1 +—5J2§ = 1 (3.38)
v Xy

and the wave induced component of T is

~ iax At = ;t - iax
at(y) e = 2a = Sxy + [1 + TJ Sxy e . (3.39)
The mixing length to 0(a) is
g =T +af el® (3.40)
o o 0

Using the definitions of Ve 2,0 and D, equations (3.34), (3.35) and

(3.36) respectively, and neglecting terms of O(a2) the average components

of the mixing length, Eo, and the eddy viscosity, ;t’ are respectively

o =Ky [1 - exp(-y/&)] (3.41)

and

v, = TL T (3.42)

The wave induced components of ILO and v, are respectively

i — Y
ag e = aky exp (-y/A) — [
° A

ISRE B

J elax (3.43)

and
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av,_ ., s X =] ve g
Celox_ | Zxy 2 exp (-y/K) [z] T el (3.4
v Sxy (1 -exp (-y/8)] \A) 2| v
where
Sey _ F" + o%F - o%T (3.45)
ﬁl

S,
Xy
Eliminating the eddy viscosity, Gt’ between equations (3.39) and (3.44)

an explicit result for the variation of the wave induced shear stress

is obtained.

-{)—t
a [2\)— + l] 2 §Xy
£ cHop (3.46)

" v ,
t — S
- 25, exp (-y/A) y

1 -
[1 - exp (-y/A)] A

Equation (3.44) and (3.46) defining Gt and T respectively are designated
If T is evaluated at the wall Model c* reduces to Model C.

as Model C*.
For equilibrium boundary layers Loyd et al. suggest the following

functional dependence of A on pressure gradient

2
- ar ar
A=A I:l + kl {dx] + k2 [dx] ] (3.47)

where A is the flat plate value.

For flow over small amplitude waves A can be expressed as

A=A+ a&elax

(3.48.1)
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where
ahe'®™ = 2Rk 1ap(o)e’™™ . (3.48.2)
The damping function is
~ lox 1/2
+
by = ytate L (3.49)
A+ alde

Using equation (3.35) and (3.36) and neglecting terms of 0(a2) the wave

induced mixing length and eddy viscosity are respectively

a  dloax _ oY i ___IE._ iox
al e = aky exp (-y/A) < [2 K'] e (3.50)
and
At iax ;£ 8 2 e (-y/A) T MA ia
a—e =yt L B DIk (l] B s e X, (3.51)
v v Sxy [1 -exp(-y/Z)] &)|2 A

Eliminating the eddy viscosity between equations (3.39) and (3.51) the

wave induced shear stress is

v
[ _Gt ] 2 Tt u' exp (-y/X) y A
al[2 —=+1{2s58 -~ ' —_
v xy [1 - exp (~y/A AR
i p(-y/A)] LA JA
at(y)e™®* = — S . (3.52)
v
— U' exp (-y/A) (y)

9l = ——
[L-exp (-y/A)] |&

Equations (3.51), (3.52 and (3.48.2) represent an equilibrium eddy

viscosity model for flow over a small amplitude wave.
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In situations where the pressure is varying rapidly Loyd et al.
[42] (see literature survey) have suggested that the flow close to the

wall sees an effective pressure gradient,

dp (d_P]
d dpP dx dx eff
I 3= = — (3.53)
eff Ky
where kL is a lag constant.
Solving for a periodic pressure gradient
iax s
2 e NESDACT R
ap,ss® = (3.54)
[1+1 osz]
and thus replacing p with ﬁeff equation (3.48.2) becomes
aAk ioq; .
aAeff eiax - et . (3.55)
{1+ iakL]

Thorsness [70] has labeled the above formulation for Aeff together with
equation (3.51) and equation (3.52) evaluated at the wall Model D. Abrams,
Frederick and Hanratty [2], using the local value of the shear stress
equation (3.52) together with equation (3.51) and (3.55),have labeled this
formulation Model D*.

A slightly different approach is also explored in this research.
Instead of accounting for the nonequilibrium effects in the boundary
layer by relaxing the pressure gradient, the complete Reynolds stress term,
R, is relaxed, by introducing an effective, Reff’ satisfying the following

first order rate equation.
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R AR
d (R iox ( eff) aeiax (3.56)
dx | eff?€ K .
R
Solving for a periodic variation yields,
R
R ff B et e s a (3’57)
= [1+iaky]

~

, T, A, and Reff define

a nonequilibrium relaxation model for flow over a small amplitude wave.

Equations (3.52), (3.51), (3.48.2) and (3.57) for'\?t

The mean velocity profile to be used with the above turbulence
models is obtained by integrating the wave averaged momentum equation

(3.15). This results in the well known Van Driest velocity profile.

2 dy (3.58)
1+7 @+ 629201 - exp (-y/B)1%)

_ y
U(y) = J
(o]

c.3 K-e Model

The basic high Reynolds number K-e model used in this thesis is
the model proposed by Jones and Launder [29,31l}. Several workers have
extended the basic model to include the low Reynolds number viscous wall
region. Patel et al. [54] have tested many of these models against data
sets obtained in a variety of external pressure gradients. The most
successful low Reynolds number model tested is the one proposed by
Chien [13]. This is the model adopted for use in this thesis.

The K-e model requires that a partial differential equation be

developed for the turbulent kinetic energy

x| i T 1
K 5 ujug (3.59)
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and for the isotropic turbulent energy dissipation rate
Bui aui
€T %, ox, G0
J 3

Equations for the kinetic energy and dissipation rate are presented in
Appendix C together with the necessary closure assumptions. The closed
form of the energy and dissipation equations in boundary layer coordinates

are respectively

I I1 II
U 3K 3K _ 1 3 (1 ek 1 3 3K
a + cy) ox Vay - @+ o) 3% [(1 + ky) ax} T+ =y) 3y [(1+Ky) 3},}
ITT 11T
e RN O Ny 0K o,
(L+xy) 9x \(L+xy) vog 3x (L + xy) 3y y Vo 3y
v
-a'v' ﬂl - U + 1 _a_Y_
dy (I+ «ky) (@1 + xy) 3x
v " ’ v v
L TR S 1 T v 2K
“ (1 + ky) 3x +(1+-v<y) v oy € y2
and (3.61)
I II IT
U 3 %e _ 1 o 1 3e 1 3 3e
(1+«ky) 3x v 3y (1+«ky) ax{(1+xy) 8x]+ @ +xy) 3y[(14-Ky) ayJ
III 111
1 3f 1 t 3 1 5 Yt ge
+(I+Ky) 3X[(l+)<y) \)(5€ 9x w5 (1 +ky) -3—}; [(l"'KY) vos 3y
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Iv
€ | (momy (U _ kU 1 v 2 13U KV
R C1 K (-u'v ){ay (1+«ky) + (L+«ky) 3x u (1 +«xy) ox (1+«xy)
Iv \
— 3V €2 2¢
AL ~ B = = .62
v' 3y K C2fo 2 fd (3 )
y
where
4 2
fo = 1-0.4/1.8 exp (-K /36e7) (3.63.1)
fd = exp (—C4y'cw) (3.63.2)
Terms I = advection of K or ¢ by time averaged flow
Terms II = viscous diffusion of K or ¢
Terms III = turbulent diffusion of K or € by pressure
and velocity fluctuations
Terms IV = production of K or ¢ by time averaged flow
Terms V = dissipation of K or ¢
The eddy viscosity Ve is defined as
Ve Cu K2 |
o 5 [1 - exp (—C3y1w)] . (3.64)
In summary, the turbulence model is assumed to be governed by equations
(3.61) - (3.64) with the constants o = 1, T o3 Cu = 0.09, C1 = 1.35,
C2 = 1.8, C3 = 0.0115, and C4 = 0.5. The values used are those suggested

by Chien {13].
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For flow over small amplitude waves it is possible to define a
mean and fluctuating component of the turbulent energy and dissipation

rate

~
1l

TE) & ehe)e s (3.65)

EE) & el (3.66)

m
]

Substituting equations (3.65) and (3.66) into equations (3.60)-(3.61),
collecting terms of like order and neglecting O(az) terms, the following
equations for the mean and fluctuating energy and dissipation rate
result.

Mean energy equation:

- - - - - 2K
0= [(l + vt/voK) K'] + ny g'- e - =5 (3.67)
y
Mean dissipation equation:
' Cie IR
_ _ 18 - 2 :
0 = [(l-l-\)t/\)ce) 8'] + - RX ' - _O - Zd (3.68)
2 K y K y
where
=4
e 0.4 -K
fo = [ —_1.8 exp {———36_8_ ]-] (3.69.1)
£, = exp (-C4y) (3.69.2)
;t EZ
;—= Cu_g_ [1 - exp (—C3y)] (3.69.3)
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K=¢c=0 at y=20
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(3.70)

and at large y the energy and dissipation distribution must be such as

to yield a constant stress region

K =g 2
4 for large y.
€ = 1/ky .
Fluctuating energy equation:
b ! T ;
a[iaUk+K'v]elax=a —a2{1+_£-]ﬁ +a2_tf'
vao vo
K K
- — '
v ~
+ [—t—f’" +—t-k']
vo va
K K
+K' a2+fc"+1>k -§+2k/y2 E

v v ' C.e R R
o s | U I R, T N R
\)(Ie \)(‘JE _I-(- Xy = K
f— _2 A\
C,e C,e ~
FuIE op = 2__ £ g_% -—E—
K Kk K ° | T K

(3.71)

(3.72)
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¢l = . =
2° © @22y K% ||ak 28| K4
= exp 2 = T =\ =7
K 36 36¢€ K e | €
2e = L 2¢ F"'(0) iox
- =5 fd + 5 exp (-C4Y) C4y 5 } (3.73)
y y
where
. 72
v C K ~ 2
t 2k
L e X1 - exp (-G ] [7—5]
= K =
EZ
4+ C,C — exp (-C.y) L F"(0) (3.74)
3w T 377 2
and
P=2R s _ + 2t S
Xy Xy Xy "Xy
+R_ s +R_s__ . (3.75)
XX XX yy yy .
Assuming that the normal stresses are small and using equation
(3.30) the production term becomes
Voo _ 5 [28, Gt
P, == (U ==+ . (3.76)
v L Sxy it

The velocity field is obtained by solving the stream function equation

(3.13) simultaneously with equations (3.71)-(3.76).
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The boundary conditions at the wave surface and at large values of y
for the fluctuating energy and dissipation are
k=c¢=0 at y = 0 (3.77.1)
and
k=¢=0 for large y (3.77.2)

Since equations (3.72) and (3.73) are singular at y = 0 the boundary
conditions at the wave surface cannot be used in the form presented in
equation (3.77.2). If a Taylor series expansion is made on equations (3.70)

and (3.71) about y = 0 the following boundary conditions are arrived at

Gdk'
k-—z—— =0 (3.78.1)
at y = 6d
. 84
e - 5= 0 (3.78.2)

where Gd is a small distance from the wave surface,

(d) Streamline Curvature

The influence of streamline curvature is taken into account at the
zero equation level of turbulence modeling by modifying the plane shear
mixing length relation equation (3.35) in the manner suggested by Bradshaw.

L = 20 1 - BcRic) (3.79)

Here Bc is an empirical constant and Ri is the curvature Richardson
c
number defined as

R, = —2% (3.80)
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where l/RC is the curvature of the streamlines. For small amplitude waves

-U 2 i
1R = —a EZU) 2.1ox (3.81)
in boundary layer coordinates. The details of this derivation are
given in Appendix D.

Bradshaw suggests that an effective radius of curvature, Reff’

satisfying a first order lag equation be used

ady = . (3.82)

Here kC is the curvature lag constant. Solving the above equation for
a periodic variation, the effective radius of curvature of the streamlines

is
1 1
R AT ) (3.83)
Ceff C [

Using, l/Rc in equation (3.80) and neglecting terms of O(az), the
eff

curvature Richardson number can be written as

R, =aR, e ** (3.84)
i i
c c
where
A jox a2(F -U) a2 iox
alR. e = - 3 e . (3.85)
- T (1 + fokg)
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The wave induced mixing length, eddy viscosity and shear stress
distribution incorporating the effect of curvature are respectively
~ A T A - A i
aZeiax=a ky exp (-y/A) :E L —-é—— -2 g R eax’ (3.86)
2112 A o "¢ ic

]

iax Xy , 2exp (=y/8) [l] [

a -;t— e = a|= =
Sxy [1 - exp (-y/A)]

A 2§)—t/v U' exp (~y/A)

iax = A
ate =a|:(2vt/v +1)2sxy-

[1 - exp (-y/a)]

S ~
—\-;-U' exp (-y/A) [y‘

[1-exp (~y/3)]

1l -

(e) Finite Boundary Layer Calculation

The calculations thus far have assumed that the boundary layer is
sufficiently deep suchthat in the region where the wave induced flow
is negligible the average velocity profile is still logarithmic. The
problem has therefore been characterized by a single parameter the wave
number,a. In this section the requirement of an infinite boundary layer

thickness is relaxed.

e.l Mean Flow
The average velocity profile is assumed to be given by the Coles

proposal (see Cebeci and Smith [12]).
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’ y
U= 2 dy — 2 gip? [g g} (3.89)
. 1+ /r17+ 4 k2y2(1 - exp (—Y/A))2 s

where I = 0.55 for a zero pressure gradient boundary layer and & is the

boundary layer thickness.

e.2 Eddy Viscosity

A finite boundary layer consistsof two parts: a fully turbulent
inner region, where the Reynolds stress distribution is calculated from
equations (3.51) and (3.52) for the average and wave induced flows
respectively and an outer region, where Cebeci [12] suggests that the

mixing length is given as

g =9 y <ys 6. (3.90)

Here y is an empirically determined constant approximately equal to
0.075 and e is obtained from the continuity of lo. The eddy viscosity

is found using (3.34) to be

| y <ys<8 (3.91)

v
22
[v] Yy 8© U yCSysa (3.92)
and the wave induced eddy viscosity 1s
Gt iox 2.2, ~ iox
a|—|e =ay § 2 sxy e Yy, £ <§ . (3.93)
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Using equation (3.30) the wave induced Reynolds stress in the outer

region of the boundary layer becomes

A iax t 2 iox

The details of the finite boundary layer calculation are presented in

Appendix E.

37

(3.94)
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CHAPTER &

EXPERIMENTAL MEASUREMENTS AND RESULTS

The purpose of the experimental effort was to obtain data which
can be used to compare the various turbulence models developed in

Chapter 3 for the wave induced Reynolds stresses. The data consist of

time average shear stress profiles and profiles of the root mean square

value of the fluctuating velocity gradient at the wave surface. The

measurements were made in the large aspect ratio channel used by Thorsness

{70 ]. Wall stresses were measured with electrochemical techniques.

To test the theory developed, data had to be obtained over the range

of dimensionless wave numbers of 0.0005 < a = %%% < 0.01.

It was
possible to meet the above requirement by modifying existing equipment

in one of two ways. The facility could be redesigned so as to increase
the range of friction velocities attainable by a factor of four or waves
of four times the previously used wavelength could be employed. Cook [15]

has shown that for a given channel the pinimum channel height to wave-

length ratio that can be used before the upper wall interferes with the

h . .
measurements at the wave surfaceis X = 1. This condition would have

required the construction of a new channel if waves of longer wavelength

were to be used. For this reason it was decided to use the existing

channel and to install a pumping network that would provide the necessary
range of friction velocities.

Since the measurements are to be compared with linear theory, the
amplitude of the wave model used in gathering the data had to be
sufficiently small so as to prevent the appearance of higher order

harmonics in the data. Zilker has demonstrated that provided the
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*
a,u

dimensionless amplitude, < 30, the contribution of second and higher

order harmonics to the total shear stress profile is negligible.

(a) Flow Loop

The flow loop used in this study was originally built by G. W. Cook
and modified by D. P. Zilker. The modifications necessary to carry out
the experiments reported in this thesis are reported in detail by
J. J. Buckles [9]. Consequently the description given here is limited
to the essential features.

The flow loop shown in Figure 4.1 consists of a rectangular channel
having a cross sectional area of 2 in. x 24 in. and a length of 27.5 ft.
The channel was originally designed to handle liquid flows for which
the velocity profiles could be considered fully developed in the neigh-
borhood of the test section. This portion of the channel consists of a
24 in. x 27 in. removable section located at the far end of the 27.5 ft.
run. It is here that the wave model used in the experiments was inserted.

Two pumps connected in parallel were used in the experiments. The
smaller pump is a Worthington 6 CNG84 centrifugal, 316 stainless steel
model. It was driven by a 5 h.p. motor. This pump was used to deliver

flow rates of up to 800 (g.p.m.) corresponding to a channel Reynolds number,
U, h/2
b

\Y

= 42,000,at room temperature. The larger pump constructed from
316 stainless steel is a Worthington model 1050-D centrifugal pump and
is driven by a 60 h.p. motor. This pump is able to deliver flow rates

Uy h/2
of up to 2700 (g.p.m.) corresponding to 5

= 120,000. The range of
friction velocities obtained with the two pumps is 2.93 x 10-2 ft/sec <
* !

u < 5.86 x 10 & ft/sec. The pumping network is shown in Figure 4.2.

All piping and fittings were either 6 in. or 8 in. Celanese schedule
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Figure 4.1. Schematic Diagram of Flow Loop

1. Down stream rectangular to round diffuser
2. Removable wave surface

3. Test section

4., Channel

5. Honeycomb

6. Up stream rectangular to round diffuser
7. Annubar flow meter

8. Butterfly throttling valve

9. Removable blanking plate

10. Diaphragm valve

11, Small pump

12. By pass diaphragm valve

13. Large pump

14. Cooling coils

15. Reservoir tank
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6 inch pipe
—— 8 inch pipe

Figure 4.1. Schematic Diagram of Flow Loop
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igure 4.2. Photograph of Pumping Network
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80 P.V.C. Provisions were available for flow rate and temperature
control. An additional set of cooling coils had to be installed in the
recirculating tank to maintain temperature control when running with
the large pump. The flow rate was monitored by using an annubar

connected to either a mercury or mirriam oil filled manometer.

(b) Test Section

2a
ratio of 0.014 and a wavelength of 2 in. was

A wave with a
used in this study. Six cutting tools were made for the fabrication of
the wave surface. Four of the cutting tools were used to construct
complete waves, Figure 4.3, while the remaining two, Figure 4.4, were
used so as to mesh the leading and lagging waves into the flat portion
of the wave section which lined up with the channel. The cutting tools
were made from hardened steel using a new approach. A computer controlled
mill which automatically compensated for the radius of curvature of the
mill was used to generate the tools. The tools were 2 in. in length
and machined according to the relationship y = ay sin (27 x/A). The
cutting edge of the tools had a 9%° slope and therefore the amplitude
of the tools had to be compensated for in order to provide the required
wave amplitude. The formula used to calculate this compensation is
ad(actual wave) = ad(cutting tool)/cos (0), where 8 is the angle of the
cutting tool edge.

The tools were placed in a rotary cutter assembly and a wave train
consisting of ten complete wavelengths was machined into a 27 in. x 24 in. X
2 in. thick plexiglass section. The waves were machined perpendicular to
the mean flow direction. Finally the two waves which meshed into the
flat portions of the wave section were machined. A cross sectional view

of the wave pattern is shown in Figure 4.5.



Amplitude of Cutting Tool Exaggerated

>~ /4"

2"

Figure 4.3. Cross Sectional View of Cutting Tool

Amplitude of Tool Exaggerated

’ 0.014"

Figure 4.4. Cross Sectional View of End Cutting Tool
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Figure 4.5. Cross Sectional View of Wave Surface
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Holes for the electrodes were drilled into the wave surface
according to the following pattern. Twenty-one holes of 0.025 in.
diameter were drilled into the third and sixth waves respectively while
a combined total of forty-ome holes were drilled into the eighth and
ninth waves. The electrode pattern shown in Figure 4.6 was chosen so
as to minimize the interference between the electrodes and to test
whether a fully developed flow field existed.

Platinum electrodes, 0.020 in. diameter, were epoxied into each
of the holes using Techkits A-12 epoxy as follows. The epoxy was
injected into a hole. Before the epoxy dried, a two inch piece of
platinum wire, soldered onto a twelve inch coated copper wire, was
inserted into the hole from the back of the wave section. A small
amount of platinum wire was allowed to protrude on the wave side. The
platinum wire was coated with a thin layer of epoxy prior to insertion
into the holes.

Once dry the electrodes were filed down flush wigh the wave surface
using a soft file. This had the advantage of not damaging the plexi-
glass while removing the excess platinum. Once the electrodes were
flush, the surface was sanded down with progressively finer grades of
sandpaper, polished with DUPONT 0861N Rubbing Compound, and DUPONT
0761N Polishing Compound, and finally polished with Mirror Glaze Plastic
Cleaner and Polish. On completion of the polishing, the profile of the
waves was checked using a dial indicator.

The shear stress measurements were made over the sixth, eighth and
ninth waves. Figure 4.7, 4.8 and 4.9 show the profiles of the above

waves respectively as a function of x/X, taking the wave trough to be

W
! - -
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zero. The amplitude of each wave was estimated by performing a least
squares analysis of the wave profile data. The maximum relative phase
shift among the three wave profiles is less than 3°, The tabulated wave
profile data is listed in Appendix F. Figures 4.10 and 4.11 show the

front and back view of the completed wave sectiomn.

(¢) Electrochemical Technique

The electrochemical technique which uses a diffusion controlled
electrode for the measurement of wall shear stress was developed by
Reiss [58] and Mitchell and Hanratty [47]. A chemical reaction occurs
on an electrode which is embedded flush with the surface. The resulting
reaction current is related to the wall shear stress. The electro-
chemical reaction employed is an oxidation reduction couple employing
a large excess of supporting electrolyte. The cathode which is the
shear stress probe is much smaller than the anode which makes the cathodic
reaction the limiting step. By suitably adjusting the applied potential
the concentration of active specie at the surface can be made equal to
zero. The result is that the reaction rate and hence current flow
becomes a function only of the rate of diffusion to the cathode. Con-
sequently the current flow can be related directly to the mass flux at
the surface and the physical properties of the system.

The redox reaction used in this study is the potassium iodide and

iodine reaction system, in which the following reactions occur.

I; + 2 — 31 (cathode)
31 ——4—15 + 2e (anode)

The approximate concentrations of I; and the potassium lodide supporting
electrolyte were 0.0015m and 0.2m respectively. The properties of the

electrolyte are summarized in Appendix G.



Figure 4.10. Photograph of Front View of Wave Section
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Figure 4.11. Photograph of Back View of Wave Section

€S



54
Under these conditions a mass transfer coefficient may be defined
by the relationship
1
N T"nFAC Gl
e a e b
where I is the current at the cathode,n., is the number of electrons
involved in the reactionm, Fa is Farraday's constant, Ae is the area of
the electrode and Cb is the bulk electrolyte concentration. Through a
solution of the mass balance equations Mitchell and Hanratty [47] have
shown that the instantaneous mass transfer coefficient is related to
the wall shear stress as follows
3
2T(4/3)K 9L _u
1y = = = (4.2)
Wd 3 D2

where u is the viscosity of the fluid, D is the diffusion coefficient for
the reactingspecieS‘andLéis the equivalent length of the electrode,
equal to 0.816 times the diameter of the electrode. Using equations
(4.1) and (4.2) and neglecting the transverse component of the fluctu-
ating stress r; the current measured can be related to the wall shear

d
stress as follows

I=cC(rT +1) ) (4.3)

where C is a proportionality constant and ?& and T4 are the time averaged
d d

and fluctuating wall shear stresses respectively. Furthermore if

1 ) 2 1 _
(Txd/ 'rwd) << (Txd /'rwd) (4.4)
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T-cxl/3 | (4.5)
d
and
T'
I%I = ;_—d (4.6)
T
Y4

Equations (4.5) and (4.6) are the design equations used to determine

the average and root-mean square value of the wall shear stress respectively.

(d) Data Acquisition

The electronic equipment used to measure the electrode currents was
the same as that described in previous work, (Zilker {77]). Figure 4.12 gives
a schematic representation of the basic electronics. A 118 A amplifier
was used to apply a negative potential to the alternate electrodes and
to act as a current to voltage converter. The applied potential was
set by the adjustment of a Helipot so that the potential was always kept
in the mass transfer controlled plateau region. A feedback resistor,

Rf, was used such that the output voltage,Vo,was between 2.5 and 3.5 volts.
The output voltage was sampled with an Isaac-Cyborg twelve bit analog to
digital, A/D, converter. The A/D converter was in turn linked to an

Apple II plus computer. Up to sixteen channels could be sampled simul-
taneously at a sampling rate of 1 KHZ. A block diagram representation

of the data acquisition process is shown in Figure 4.13.

Data was stored in an integer basic format which allowed the Apple II
to store approximately 22,000 data points in memory. A 6502 assembly |
language program was written for the purpose of analyzing the data. Thg

program is able to calculate the mean and the variance of the output
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voltage minus the applied voltage,(Vo-Vapp). Using these values and
the design equations, (4.5) and (4.6) the average shear stress and the
root mean square value of the fluctuating shear stress can be obtained

as described in Appendix H. Provision was alsc made to transfer the raw

data to a floppy disc so as to allow for further analysis if necessary.

(e) Shear Stress Measurements

Shear stress measurements were obtained using the previously described
wave surface. Before each run was made the wave surface was cleaned with
soapy water using a soft sponge. This was followed by thoroughly:Finsing
the wave surface with deionized water. The channel was filled with
electrolyte and allowed to run for a period of time in order to remove
any entrappéd bubbles. The temperature was maintained at (26 % 0.2) ce.
At the conclusion of a run a sample of fluid was taken and the required
chemical and physical tests were performed as outlined in Appendix G.

Figures 4.14 through 4.34 show the measured time average shear stress
profiles of selected number of runs. Measurements of the root mean square
level of the fluctuating shear stress are shown in Figures 4.35 through
4.40. The average and fluctuating shear stress measurements are
normalized with the wave averaged shear stress. The data are plotted
with respect to a cosine wave such that x/X = 0 corresponds to the upstream
crest and x/A = 1 corresponds to the downstream crest. On each plot a
line is drawn through the points representing the best sinusoidal fit
of the data. The curves were obtained by performing a least squares

analysis of the data. The details of this analysis are presented in

Appendix I.
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Figure 4.27. Shear Stress Distribution for Re = 58,000
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Figures 4.41 and 4.42 summarize the average shear stress data by
plotting the phase angles and amplitudes of the sinusoidal curves
fitted to the wall shear stress measurements as a function of Reynolds
number. The phase angle is measured with respect to the wave surface,
with shifts in the direction opposite the flow direction taken as
positive. The magnitude of the variation of shear stress decreases with
Reynolds number while the phase angle increases initially, passes through
a maximum at about a Reynolds number of 35,000 and then decreases.

Figures 4.43 and 4.44 summarize the phase angles and amplitudes of
the fluctuating shear stress measurements. An error in the amplitudes
of these measuremtns is expected due to the spatial averaging of the
velocity fluctuations over the surface of the electrode and due to the
problem of frequency response. Mitchell and Hanratty [47] have shown
how to correct for both of these effects. Figure 4.47 also shows the
corrected amplitudes. The details of the corrections are given in
Appendix J. The magnitudes of the fluctuations decrease with increasing
Reynolds number while the phase angles increase with Reynolds number.

The shear stress and intensity data are tabulated in Appendix F.
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CHAPTER 5

NUMERICAL ANALYSIS

In this chapter the numerical methods used in solving the
differential equations developed in Chapter 3 are presented. These
equations include both linear and nonlinear boundary value problems

of the form

anMAxv - f . n-1
D = flyx), y'®..., v “(x), gx) (5.1)
X

where ( %uﬁxv j =1,...n) represents the jth derivative and g(x) is a
function of x. Three main classes of methods have been suggested and
used in the literature for the solution of these problems. A brief
description of these methods is given along with the details of the
algorithims used in solving the specific equations. The first class of
methods known as projection methods seeks an approximation to the solution

of a differential equation in the form

y(x) = w c..(x) . (5.2)
j=0 373

The basis functions, equVu are specified and chosen to satisfy the
boundary conditions. The basis functions are either simple polynomials,
trigonometric functions or most commonly spline functions. The problem
is then to determine the coefficients, Ou. in the linear combination.
Two widely used projection methods are the method of Collocation and
Galerkin's method.

In the method of Collocation the approximate solution, y(x), is

required to satisfy the differential equation in question at a fixed
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number of points in the range x - X . This leads to a system of,

1’
n, algebraic equations which can then be solved for the coefficients,c,.
The system of algebric equations will be linear provided the differential
equation being solved is linear. Villadsen and Michelsen [74] provide

a detailed review of this method.

Galerkin's method (Strang and Fix [68]) is based on the orthogonality

of functions. If y(x) represents an exact solution to

a"f (x)

dxn

g(£(x), v\ £1(x), v(x)) , (5.3)
then y(x) has an associated residual, r(x), defined as

n
d
reo = B gy, L Y, v) (5.4)
dx
which is identically equal to zero for all x, (since y(x) represents
an exact solution). Therefore, the residual, r(x), is orthogonal to
every function and in particular it would be orthogonal to the set of

basis functions. Hence

Jb r(x)¢i(x)dx =0 i=1, ...n. (5.5)
-

Since, y(x), is a linear combination of basis functions it is not
expected to be an exact solution of the differential equation being
solved. What Galerkin's method does is to choose a y(x) which has a
residual that is orthogonal to all basis functions, ¢l(x), .., ¢n(x),
respectively. fhis procedure, which requires the vanishing of a number

of integrals, again leads to the solution of a system of algebraic
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equations for the unknown constants,cj. Further details regarding
the above projection methods can be found in Prenter [55], Lucas and
Reddisen [43], Russel [6], and Ortega and Poole [52].

>The next class of methods are the so called shooting methods where
the basic aim is to always solve an initial value problem by using any one
of the standard forward integration techniques. This is achieved by
guessing any parameters which are needed to make this possible, and by
adjusting the guesses, directly with linear problem or iteratively with
nonlinear problems, such that all the boundary conditions are satisfied.
There are many variations of the basic idea. These include direct
shooting or the method of superposition for linear problems, (Scott and
Watts [ 63], Na [ 50]). For nonlinear problems direct shooting must be
used in conjunction with Newtons method, (Na [50]). Alternati;ely
several workers including Bellman and Kalaba [ 5] and Scott and Watts
[62 ] have suggested using the method of superposition together with
gquasilinearization.

In the final class of methods low-order finite difference formulae

are used and applied as approximations to the differential equation at
a number of discreet points in the range. The boundary conditions are
satisfied exactly if they do not involve derivatives or approximately
if they do. The result of approximating the differential equation by
finite difference formulae, is a set of linear algebraic equations in
the case of a linear differential equation and a set of nonlinear algebraic
equations in the case of a nonlinear differential equation. The method is
then, to solve the resulting set of algebraic equations directly for

linear problems and iteratively for nonlinear problems, to give



94

approximations to the solution of the differential equation simultaneously
at all mesh points. The method had been reviewed by Ortega and Poole
{52] and Fox [20].

The linear differential equations (3.13)-(3.17) and (3.72)-(3.77)
which specify the wave induced stream function, F(y), for the Zero Equation
and K-e Models were solved using a modified version of the method of super-
position to be discussed in the next section. The main advantage of the
method of superposition (direct shooting) is the existence of very good
and well programmed methods for solving systems of initial value problems.
These integrators are programmed to adjust the step by step intervals so
as to provide the desired level of accuracy required by the user.

é The nonlinear differential equations (3.67)-(3.71) which specify
the mean flow field when using the K-e ‘Model were solved by combining
finite difference techniques with quasilinearization, to be discussed in
a subsequent section. Initial attempts were made to solve this problem
using direct shooting and Newton's method. However, due to the nature
of the equations,if the initial conditions are not known accurately the
solution blows up very fast. An alternate method suggested by Scott [64],

but not tried, is the method of parallel shooting.

(a) Numerical Solution of the Wave Induced Flow

A linear boundary value problem such as equations (3.13)-(3.17) or
equations (3.72)-(3.77) may be written as a system of first order equations

and expressed in the following form, (see Appendix K),

y'(x) = F(x) y(x) + g(x), (5.6)
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Ay(a) = a, (5.
By(b) = B, (5
where y(x) is a column vector of length n, F(x) is an n x n matrix of
rank k, A is an (n - k) x n matrix of rank (n-k), B is k x n matrix
of rank k, and o and B are column vectors of (n~-k) and k components
respectively.
Applying the method of superposition any solution of equations
(5.6)-(5.8) can be expressed as
1 2 k
y(x) = v(x) + ey (x) + e,y (x)... Y (%) (5.
= v(x) + U(x)c (5.
where ¢ is a vector with k components, v(x) is a solution of the
nonhomogeneous system
v'(x) = F(x) v(x) + g(x), (5.
Av(a) = a (5.
and U(x) is an n x k matrix whose columns yl(x)..., yk(x) are solutions
of the homogeneous system
U'(x) = F(x) U(x) , (5.
AU@a) = 0. (5.
The constant vector ¢ is determined by satisfying the final boundary
condition at x = b, equation (5-8).
By(b) = BU(b)c + Bv(b) = B (5.

7)

8)

E))

10):

11)

12)

13)

14)

15)
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It should be mentioned that in classical superposition n homogeneous
solutions would have to be generated. However by suitably choosing the
initial conditions, equations (5.12) and (5.14), it is possible to
generate only k homogeneous solutions. If the direction of integration
is reversed (i.e. from b to a) then (n-Xk) solutions are required. For
simple boundary conditions [equations (3.16), (3.17) and (3.77)] the
initial matrix, U(a), can be chosen by inspection (see Appendix K). For
complex boundary conditions Scott and Watts [62 ] have developed a
general procedure for generating the initial matrix, U(a).

It often happens that the exact mathematical procedure for obtaining
the solution of equations (5.6)-(5.8) leads to poor or even completely
incorrect results when applied as a numerical procedure. 'This occurs
when the matrix F(x) has eigenvalues whose real parts are well separated.
In this case the various homogeneous solutions and the particular solution
all grow at vastly different rates. As a consequence of the finite word
length associated with digital computers the rapidly growing solutions
eventually swamp all other solutions, making them proportional to these
growing solutions or combinations of them. In this case the matrix U will
become increasingly i1l conditioned such that the vector ¢ determined by
equation (5.15) will yield incorrect results. The above mentioned
problem arises in the solution of equations (3.13)-(3.17) and (3.72)-
(3.77).

Consider equations (3.13) and (3.14) at large y such that the
derivatives of the mean velocity profile U'and U" are small and the

turbulence term, A , is negligible. Then

32 4

F'™ - (2(12 + i0U) F" + (a4 + i U)F - ia

U -a'U =0 (5.16a)
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Upon application of the standard method of solution for linear
ordinary differential equations with constant coefficients and keeping
the two solutions which are bounded at large y there results
F = FH + FH + FP . (5.16b)
1 2
= Al exp (-ay) + A2 exp (-By) + U, (5.16¢)
2 g 18/ 2
where B = (a” + iaU) (5.16c)

Assuming infinite precision the two homogeneous solutions exp (-ay)

and exp (-By) could be generated by solving the homogeneous form of (5.16a)

subject to the initial conditions

Fy =1, Fo o= (-a) y =7, (5.16d)
H il
F, =1 P -8)" = (5.16e)
H : H, y= gk
2 2
where F" denotes the nth derivative.
In fact these initial conditions will produce the following
homogeneous solutions:
FH = exp (ay_) exp (-ay) (5.17a)
1
F, = exp (By,) exp (-By) . (5.17b)
2

Since computers do not have infinite precision let the total amount
of round off and truncation error, e, (Lightfoot [41l]) enter the problem

in the initial conditions as follows:



FH =1+ ¢ F; = (—a)n at y_
1 1
n
=1+ ¢ F. = (-B) at y
F H o
H2 2

The numerical solutions that would be generated using the above

boundary conditions are:

o R }ewwe-w
26 - ) 2% -ohH |

a Be oaBe ’
1 e T‘—z‘} e e o™
2a(a + B) (8" = a”)
GZE 028
e BV BY . o BYe BY ’
2(8% - o%) 2(8% - %)
) ae aBe
FH = |1 + - 5 5 eByoo e-By
2 | 2(a-8B) 2(a” - 87)
aBe . aBe e‘BYOo eBy
28 +8)  (oF - 8D
2 2
T T e
2(a” - %) 2% - 8% '

The behavior of F, and F, as y—0 yields
Hl H2
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(5.18a)

(5.18b)

(5.19a)

(5.19b)
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—o? Bye -8
FH —a-———%—5—7z— ePY= o7FY i (5.20a)
1 2(8° =~ a)
F o efVo 7BV (5.20b)
H,

since | 8| > || .

Hence FHl and F L are no longer independent solutions of the homo-
geneous form of equation (5.16a). The point at which loss of independence
occurs depends on the word size of the computer being used.

Several workers have recognized this difficulty and have proposed
methods for maintaining the linear independence of the solutions. These
include Kaplan's filtering technique [22], Davey's [17] complete ortho-
normalization procedure, and the method of compound matrices Ng and
Reid [51]. The most widely used and tested method is the Gram-Schmidt
orthonormalization procedure.

The use of the Gram-Schmidt orthonormalization procedure was first
proposed by Godunov [25] and independently by Bellman and Kalaba [5].
The method has been discussed and used by Conte [14], Gersting [23]
and Scott and Watts [63]. Scott and Watts [62] have refined the basic
method and incorporated these modifications into an excellent code
named Suport [62].

In this thesis the Suport code was used together with an indepen-
dently written code. The latter was developed to obtain a better
understanding of the orthonormalization procedure. The advantage of
the Suport code is its extreme efficiency and the modifications which

have been added that take advantage of the complex structure of problems

like the Orr —Sommerfeld equation (see Watts, Scott and Lord [731).
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(b) Orthonormalization Procedure

The orthonormalization procedure outlined here is the method
suggested by Scott and Watts {63 ], Conte [14] and Godunmov [25].

At the points where orthonormalization is necessary the previous
independent set of base solutions are converted into a new orthonormal
set. The orthonormalization is achieved by employing the "modified"
Gram-Schmidt precedure described below. Scott and Watts [62 ] have
suggested that the modified Gram-Schmidt procedure be used since it is
(1) more stable (2) easier to code (3) more economical on storage.

Thus at any point where orthonomalization is judged necessary

Uold = PUnew (5.21)

where U0 is the old independent set, Unew is the new orthonormal

1d
basis and P is an upper triangular matrix (defined in the next section)
that is constructed from the columns of Uold' At each orthonormalization

point the particular solution is turned into the orthogonal complement

of the base set

(5.22)

where w is defined in the next section. The terms v and v
new old new
refer to the old and new particular solutions respectively.
Let the points at which orthonormalization has been carried out be
denoted by X5 Xps ceey X and let X, = a. Now consider the first
interval defined in the range [xo, xl]. Let the particular solution,

homogeneous solutions and overall solution be denoted by vo(x), Uo(x)

and yo(x) repsectively. Then vo(x) satisfies
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v;(x) = F(x)vo(x) + g(x), Av(a) = a, (5.23)
and Uo(x) satisfies
Ué(x) = F(x)Uo(x), AUo(a) =0 . (5.24)
The general solution on this interval is obtained using the method of
superposition. Hence,
yo(x) = vo(x) + Uo(x) e, (5.25)

where <, is a constant to be determined by matching yo(xl) with yl(xl).
In using this representation Uo(xl) and vo(xl) are the old independent
set of base vectors and the old particular solution at X;- The new
orthonormal set of base vectors and orthogonal complement to this set

at x, are denoted by Ul(xl) and vl(xl) respectively. Using Ul(xl) and

vl(xl) as initial conditions on the interval (xl, xz) the above procedure

is repeated by solving

vi(x) = F(x)vl(x) + g(x) (5.26)

subject to the initial condition
Vl(xl) = vo(xl) - Ul(xl)w1 (5.27)

and by solving the system

Ul (®) = F(x)U; (x) _ (5.28)

subject to the initial condition



UG =R
The genefal solution on this interval is
v, (x) = Vl(x) > Ul(x)cl ,

where the vector c, is determined by matching yl(XZ) with yz(xz),

1
yl(xz) = yz(xz)

Hence, on the interval (xi, ) the solution is bbtained as

*i+1
v () = v () + U )y,
provided that the condition of continuity is met
vy, (%) = v (%))
Thus from the above condition of continuity
Vi () F Uy g (xpdey g = vy ) + U (e
but
vi(eg) = vy g (k) = Uy
and

Ugp(xp) = Uy ()P

(.

(5.

(5.

(5.

(5.

(5.

(5

(5.
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29)

30)

31)

32)

33)

34)

.35)

36)
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Therefore equation (5.34) becomes
Vi—l(xi) + Ui(xi)Pici—l = Vi-l(xi) + Ui(xi)(ci - Wi) . (5.37)
This provides the basic recursion formula for the vector ci 1 in
terms of Pi’ LA and c;
Pici_l = (ci - wi) (5.38)
At the final point, x = b, on the interval (xm, xb) the solution
of the differential equation must satisfy
ym(b) = vm(b) + Um(b)cm . (5.39)
Hence, using equation (5.8) the constant c, can be determined,
By (B) = Bv_(b) + BU_(b)e =8 (5.40)
or
BUm(b)cm =8 - va(b) . (5.41)
Having determined the constant vector <, (and providing all the
orthonormalization information, such as Pl, P2, 000 Pm have been
retained) the vectors Co-1® Cp2® *°t» G, cam be found by solving the
systems, equation (5.38),
Prcr-l =c. "W, r=m,m-1, ..., 1 (5.38)

by back substitution. If the initlal values Ui(xi)’ vi(xi) i=20,1,

2, ..., m have also been retained the solution y(x) can be calculated
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at any point xe (Xi’ xi+l) by integrating forward from X and using

the relation

y(x) = vi(X) + U, (x)e; - (5.42)

In the formulation presented above the particular solution is not
normalized (i.e. not made into a unit vector). Scott and Watts [62]
have shown that the final solution representation with and without
normalizing the particular solution are mathematically equivalent. If
the particular solution is normalized then the recursion formula equation
(5.38) is not valid. Scott and Watts [62] have developed a recursion
formula valid for this case. They mention that a possible advantage of

normalizing the particular solution is that it is then well scaled.

(¢) Gram-Schmidt Orthogonalization Procedure

In this section the modified Gram-Schmidt procedure is outlined
together with a set of criteria that must be met to prevent the solution
vectors from becoming dependent.

Scott and Watts [62] have suggested that the old independent set

of vectors Yo be reorganized such that the vector with the largest

1d

norm appears in the first column. This involves postmultiplying the

vector Yold by a pivot matrix E such that

Y U P (5.43)

= ! =
old Yold = new

where Yo is the reorganized matrix. The term Yé is the matrix

1d 1d

obtained directly from integration, E is the permutation matrix, Unew

is the orthonormalized basis and P is an upper triangular matrix defining
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algorithm then the recursion formula equation (5.38) must be modified.

Consider the interval (xi—l’ xi).

Yy (g) = vy g () + Uy DBy ¢4
where

Ui—l(xi)Ei—l = Ui(xi)P .

Also

vi(xi) + Ui(xi)Eic’ ,

Vi (x;) i

vi(xi) + Ui(xi)ci 5

Equating (5.44) and (5.47) at, X, yields
v (x) H U DB G E g = v () U (x)ey

Eliminating Vi-l(xi) and vi(xi), the following recursion relation is

obtained:
iy = (e m vy

where

cy1 = By 1651

The modified Gram-Schmidt procedure defines the matrix P (see

Stewart [67]) as,

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

-
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[ 1o 0) ©) 0) i
H o [2 ,ul] [u3 ,ul] ..... [uk ,ul]
(1) (1) 1
I R P T
P =
(2) (2)
U3 ll ..... (uk 5 U3
(k-1)
” Yk “ (5.51)
and the matrix U by
(0) _ -
j yj’J l, ,k
o 1]
ugi) = ugi-l) -(usi_l), u,) u,
J J 3 1 1
i=1, .y k=1
j=1i+1, ..., k
u, = u?j_l)/ ugj-l)ll (5.52)
J J J

The subscript notation refers to the corresponding column vectors

in Yold and Unew [see equation (5.43)].

The particular solution vo1d is turned into the orthogonal complement
of the new base set U (i.e. the vector,v , 1s converted into a vector
new old

v such that v is orthogonal to all the components of U__ )
new new new

(5.53a)

- U A
new old new new °’
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where W the i-th component of the vector w is defined to be
- (5.53b)
Wi T Vioig Y4 ¢ c

Here v:ld is the transpose of Void and ui is the i-th column of Unew'
It should be noted that the above operation simply makes use of the
Gram-Schmidt procedure.

Several tests have appeared in the literature to determine whether
an orthonormalization is necessary (Scott and Watts [62 ] Gersting and
Jankowski [22]). Scott and Watts have suggested a check which is described
below. The algorithm has been implemented in the code developed for
this thesis. A slightly different version is used in the Suport code
[62]. The basic idea is to avoid using solutions that violate a

condition which implies that linear dependence may not be present.

The conditions chosen are,

Ilu;-l” < ellyjll j=1,2, ... k (5.54)

and

(R I (5.55)

where € = 10“L and L is about three-fourths of the number of significant
decimal digits available in the computer wordlength. Scott and Watts
[62 ] present the following justification of the above criteria. Suppose
that a vector in the old set is dependent, then the orthonormalization
procedure will turn it into a null vector. This provides the motivation

. - 0
for comparing the size of ij with that of Pll’ where P11 = ||ul ” is
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used since the vector ug has the largest magnitude of the vectors in
the old set as a result of the pivoting process.
Since the magnitude of the vectors in the original set may vary

these vectors are appropriately scaled by producing a set of unit vectors,

YS. Hence
YS = UPS = UP (5.56)
where S = diag { l/||Yl||, ---,1/||Yk H}
and
_ P..
Py 43 . (5.57)
A

The linear dependence test on the diagonal now requires that

P, Pll
i I | S (5.58)

£ .
Iy |l IFA
The above expression is the required linear dependence test.

(d) Numerical Solution of the Mean Energy and Mean Dissipation Equations

The system of equations (3.67)-(3.71) describing the mean energy

and mean dissipation can be written in the form

wm =

d t | d&K - = -

z + — | £ +6= = (5.

&y 1 v e % K,e,y) =0 (5.59)
T =

d t de — - —

— + iy o =

dy 1 Vo, J i +6=- K,e,y) =0 (5.60)
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Thesé differential equations are subject to the boundary conditions
K=0,e=0aty=0 (5.61a)
7 kgL = 1
K==, e =-— for large y (5.61b)
ok Ky
u

where k is the Von Karman constant. The boundary conditions at large y
are simply that the mean flow is described by a comstant stress layer.
In the above equations Gf and GE-appear as source terms and represent
the combined effects of production and dissipation.

These highly nonlinear equations are solved ﬁsing finite difference
techniques and Newton's method. In order to derive the discretization
equations a control volume is set up on a variable step grid such that
the boundaries are midway between the grid points (see Figure 5.1).

Equations (5.59) and (5.60) can then be integrated across the control

volume to yield

5 T s
S TR KT
i“"!i l+;5 i"!'i i";i ';5
- - i+
v = Y S
14—t | dep e tl deb L g gy=0. (5.63)
Vo dy | Vo, dy i-k €
i+s i+l i-% %

The derivatives in equations (5.62) and (5.63) are approximated by using
a plecewise linear profile. The integral terms are estimated by using

the average value of the functions GK,and G_ respectively.
: €



Typical Control Volume

Figure 5.1. Grid Used for Integrating Mean K-
Model Equations
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Since the grid consists of m + 2 levels and since the energy and
dissipation are known at both boundaries, finitedifference equations
need only be written for the grid points 2 £ i sm+ 1,
v K, . -K) v &, -K, )
[1+ c) il ~ i _{l+Tt] i i-l
i+ Ay i~ 8y, 4
(by; + Ay, ;)
+6_ 1 i Lo, (5.63a)
K, 2
i
v, ( - &) v R
14t i+l i_[l_,_\%J i~ ti-l
€ iy MYy ik Ay;
(by, + by, _,)
e 2 L -0, (5.63b)
1 2
K, =0, € =0, (5.63c)
o 1 = 1
w2~ g 0 fmi2 T Tmk2 (3-634)
U

The above system represents 2m nonlinear algebraic equations in

Km+2’ €2’ The algebraic equations

2m unknowns 1?2 » €95 1—<_3 s g5 ey
were solved using Newton's method, Abrams [ 1 ]. The solution procedure

was to linearize the-source terms G_ and G_ as follows

w
™

¢ =gty 1 ® K)o+ ), (5.64a)
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= n-1
a7 a6,
@ =ty L &P -RPH e —| G-FH (5.64b)
=i i dK de
i i
and to linearize the diffusion terms as follows,
[ ;£ no_ - ;; n-1
1+—]1 &® =RKIY D= {0 (FIE S o=l mnsl
S i+l ~ i { v ] (RS )
1+ i+ i+l i
R e v, w-1
+ [1 + —] CHTE Kin+—11) + {1 + —\-’t—]n X - K;’_l_l) , (5.65a)
i+ i+
R = n-1
t —n —-n, _ t —n-1 _ —n-1
i vo_ | (€i+l T ) = |1+ vo (Ei+l i )
1+ i+
— yn-1 — yn-1
Ve —n —n-1 Ve —n —n-1
+ |1 + o (€i+l -1 ) + 11 +-;E~ (ei - gy DL (5.65b)
€ 14k € |1tk

Similar expressions to (5.65a) and (5.65b) can be derived for the
, . = n —-n —n o= n —n —n
diffusion terms (1 + \)t/\))i_15 (1(i - Ki—-l) and (1 + Vt/csv)i—!s (ei - ei_l).
In the above equations the superscript, n, refers to the nth iterate

while the superscript, n-1, refers to the previously known iterate. For

convenience the following notation is introduced

s =XP- Ef‘l 2s1ism¥l, (5.66a)
K

i
s o= - e 2sismel, (5.66b)
€.

1
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s =6 =0, (5.66¢)
B &
§_ = &_ = 0, (5.66d)
2 Emt2

If equations (5.66a)-(5.66d) are substituted into equations
(5.64a)-(5.65b) and the resulting equations substituted into equatiomns
(5.63a)-(5.63d) a linear system of 2m equations for the unknown iterates

6=, 6~, .., 8 , 6~ , is obtained. These iterates are

K € K €

thgn uszd tou daz:u::-lthe g]].-ues of En‘l —n-1 En_l —n-1
P 2 ’ 52 0 Q0 S| O E:m-{-l

This procedure is repeated until a satisfactory level of convergence

is obtained.
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CHAPTER 6

RESULTS

In this chapter the results of the calculations made with the
various models developed in Chapter 3 are presented. An interpretation
and discussion of the results is made in the final chapter of this
thesis. l

The solution of equation (3.13) provides detailed information on
the velocity, shear stress and pressure fields. It is found that the
flow field in the immediate vicinity of the wave surface and the wave
induced surface shear stress are particularly sensitive to the type of
turbulence model employed. Therefore, emphasis will be placed on the
prediction of the measured surface shear stress profiles presented in
Chapter 4. These profiles are characterized by a dimensionless amplitude
a |f(o)| and phase angle 86 such that Real (a% (o) eiax) = aIf(o)l cos
(ax + 6). For thick boundary layers both ]%(o)| and 6 are functions of
a single.parameter, a, the dimensionless wave number.

Where possible the predicted wave induced surface pressure is also
compared with the available measurements. However, the considerable
scatter in the pressure measurements makes the comparison difficult. The
wave induced pressure is also characterized by a dimensionless amplitude

a [ﬁ(o)| and a phase angle Gp such that Real (aﬁ(o)eiax) = alﬁ(o)] cos

(ax + ep).

(a) Quasi-Laminar Model: Model A

The simplest model developed in Chapter 3 is the Quasi-Laminar

Model (Model A), for which the effects of turbulence enter the problem
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only in the specification of the mean velocity profile. Thorsness [70]
has examinéd several velocity profile relations and concluded that the
calculations are insensitive to the choice of a velocity profile function
provided it gives a reasonable fit to the experimental measurements.
Consequently the calculations were carried out using the Van Driest velocity
profile with the Von Karman constant, K = 0.41, and the viscous thickness
parameter, A = 26. Figures 6.1 and 6.2 compare the predicted values of the
magnitude and phase angle of the wave induced shear stress with measurements
as a function of a. For large values of a, corresponding to small wave-
lengths, experiment and.theory are in fair agreement; however, as the wave
number decreases the deviations between experiment and theory increase.
This is expected since the influence of the wave surface extends further
into the flow as the wavelength increases (decreasing a). For large values
of o the effects of the wave surface are confined to the viscous wall
region. Since the fully turbulent part of the boundary layer is undisturbed
the effect of turbulence on the wave induced flow is not important.
Figures 6.3, 6.4, 6.5 and 6.6 show the wave induced velocity profile
function, Real (u(y) eiax), for ¢ = 0.1, 0.01, 0.0045 and 0.001 respectively.
These show how the disturbance caused by the wave is confined closer to
the surface as o increases.

Figures 6.7 and 6.8 compare the predicted magnitude and phase angle

of the surface pressure with the available data.

(b) Model C*

The first turbulence model tested, Model C*, employs the Van Driest
mixing length hypothesis to estimate a turbulent viscosity and ultimately
a turbulent shear stress. The model uses the flat plate value of A = 26

for the viscous sublayer parameter. To account for the effects of pressure
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gradient on the thickness of the viscosity dominated sublayer the
local value of the wall shear stress is used in the Van Driest damping
function. Figures 6.9 and 6.10 compare the amplitude and phase angle
of the shear stress with measured values. The model predicts a maximum
in the phase angle of the shear stress at o = 0.007 which is not what
is observed experimentally. The model also fails to predict the sharp
decrease in the phase angle of the wave induced shear stress.

The phase angle and amplitude of the wave induced surface pressure
are shown in Figures 6.11 and 6.12. Figures 6.13, 6.14 and 6.15 show

the wave induced velocity profiles for a = 0.01, 0.0045 and 0.001

respectively.

(¢) Equilibrium Turbulence Model

The next model tested is similar to Model c* except that the effect
of pressure gradient on the viscous sublayer is accounted for by allowing
the sublayer parameter, A, to be composed of a mean value and a wave

induced valve, Aeiax, which is a function of the pressure gradient. This

-formulation is referred to as the Equilibrium Turbulence Model since the

model assumes that the turbulence adjusts instantaneously to changes in
the pressure gradient.

The implementation of this model requires the specification of a
single constant, kl’ defined in equation 3.47. Kays et al. suggest a
value of =30 < k1 < =20 be used. Figure 6.16 shows the effect of this
constant on the calculated phase angle of the wave induced shear stress.

For an equilibrium situation the pressure gradient would tend to
g¢hift the maximum in the wall shear stress in the downstream direction
because an adverse pressure gradient which tends to enhance turbulence

exists on the downstream side of the wave. Therefore for small values
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of & the consequence of including pressure gradient effects in an
equilibrium model is to give lower value$ of the phase shift than would

be obtained with Model C*(kl = 0), Figure 6.16.

(d) Model D* and Relaxation Turbulence Model

The turbulence is not expected to be in a state of equilibrium with
the local pressure gradient. Two approaches which are extensions of the
Equilibrium Turbulence Model are explored.

The first assumes that the turbulence only in the viscous wall region
is not in equilibrium with the local pressure gradient. To.account for
this an effective wave induced sublayer parameter, aAéff eféx, defined
in equation (3.55) 1s used. This formulation has been designated as
Model D* (see Chapter 3).

The implementation of this model requires the specification of an
additional constant, kL, defined in equation (3.53). Figures 6.17 and
6.18 compare the predicted phase angle and amplitude of the wave induced
shear stress with measurements. Figures 6.19 and 6.20 compare the
predicted phase angle and amplitude of the pressure with measurements.

The constants used in these calculations are kl = ~35 and kL = 1800.
Figures 6.21-6.24 show the effect of a on the wave induced velocity field.
The values of a are 0.01, 0.0045, 0.001 and 0.0006 respectively.

The second approach differs from Model D* in that the turbulence
throughout the boundary layer is not considered to be in equilibrium with
the pressure gradient. To account for this the complete Reynolds stress
term defined in equation (3.33 ) is relaxed, rather than only Aeiax.

The implementation of this model, previously referred to as the Relaxation

Model, also requires the specification of a second constant, kR’ defined

in equation (3.14).
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An excellent fit of the measurements of the phase angle and amplitude
of the wave induced shear stress Figures 6.25 and 6.26 is obtained with
k, = =20 and kR = 4200. Figures 6.27 and 6.28 show the effect of the

1
constants k, and kR on the model by comparing the predicted values of the

1
fluctuating wall shear stress with measurements for three sets of values
of the constants. Figures 6.29 and 6.30 compare the predicted phase
angle and amplitude of the wave induced pressure with measurements. The

effect of a on the wave induced velocity field is shown in Figures 6.31~

6.34 for a = 0.01, 0.0045, 0.001 and 0.0006 respectively.

(e) K-e Model

The last model to be tested is the K-e& Model. In this model the
effects of pressure gradient and relaxation are accounted for in a natural
way through the defining differential equations. The mean velocity profile
used in calculating the wave induced flow is not the Van Driest profile,
but rather one generated using the mean momentum, mean energy and mean
dissipation equations. The profiles of these quantities are shown in
Figures 6.35-6.37 respectively.

Figures 6.38 and 6.39 compare the calculated phase angle and amplitude
of the wave induced shear stress predicted by the K-e Model. The calculated
maximum in the phase angle occurs at a = 8 x 10-5. The sharp decrease in
the phase angle as a function of a is not as apparent as that predicted
by either Model D* or the Relaxation Model. The K-¢ Model also under-
predicts the magnitude of the maximum phase shift of the shear stress.

Figures 6.40 and 6.41 compare the predicted phase angle and amplitude of

the wave induced pressure with measurements.
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Figure 6.31. Real (ﬁelax)for Relaxation Model
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In Appendix L it is shown how the wave induced turbulent kinetic
energy, aﬁ(y)eiax, is related to the wave induced variation of the
root mean square level of the fluctuating velocity gradient, /[%EE;E;
Figures 6.42 and 6.43 compare the ﬁhase angle'and amplitude of the
predicted wave induced kinetic energy with the experimentally determined
values. In the range of the experiments the predicted amplitude is in
féir agreement with the data. Poor agreement between the measured and

¥ is obtained. However both theory

predicted phase shifts of alz(y)eia
and experiment predict a phase shift such that the maximum occurs on

the upstream side of the wave.

(f) Curvature Effects

Model C*'wés modified to include curvature effects by multiplying
the plane flow mixing length expression equation (3.35) by a curvature
correction equation (3.79). This model was chosen as opposed to either
the Relaxation Model or Model D* in order to isolate the effect of
curvature on the turbulence. 1The straightforward application of the
curvature correction requires the specification of one constant, Bc’
and assumes that the local turbulence is always in equilibrium with the
streamline curvature.

Figures 6.44, 6.45, 6.46 and 6.47 show the phase angle and amplitude
of the wave induced pressure and shear stress for different values of
Bc respectively. For small values of o the effect of curvature 1is to
shift the phase angle of the shear stress in the upstream direction.
This may be explained since the effect of the wave on the turbulence
(from curvature considerations) is to enhance the turbulence at the

trough and suppress the turbulence at the crest. For large values of
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o the effect of curvature is to shift the maximum in the pressure and
hence the minimum in the pressure gradient in the downstream direction.
This in turn (from laminarization arguments) causes the shear stress to
move in the downstream direction.

“ Since the turbulence 1s not expected to respond instantaneously to
changes in the streamline curvature Bradshaw suggests that an effective
radius of curvature defined in equation ( 3.82) be used. This requirés
the specification of a curvature lag constant, kc' Figures 6.48, 6.49,
6.50 and 6.51 show the effect of this constant on the phase angle and
amplitude of the wave induced pressure and sﬁear stress respectively.

Recent pressure measurements from Langley Field [35 ] not included
in this thesis indicate that the phase angle measurements of Kendall
are the most reliable. It is concluded (see Figure 6.48)that inclusion
of curvature with Bc = 1.5 provides the best fit of the available
pressure data. Consequently calculations were made using Model D* with
a curvature correction. This model was chosen since it allows the
turbulence to adjust at different rates to the effect of pressure gradient
and streamline curvature. Figures 6.52, 6.53, 6.54 and 6.55 compare the
wave induced phase angle and amplitude of the shear stress and pressure

with measurements. The constants used in these calculations are kl = =30,

kL = 1550, BC = 2 and kc = 0,
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CHAPTER 7

DISCUSSION OF RESULTS

In this chapter the major points which have emerged from the
experiments and the calculations are presented.

The measurements of wall shear stress have been shown to provide
an extremely sensitive test for turbulence models. Consequently the
reliability of any theory should be tested by examining its ability to
predict the variation of the wall shear stress over a wide range of
conditions rather than its ability to predict the shear stress profiles
for some fixed flow cén&ition.

Figures 7.1 and %.2_compare the calculated values of the amplitude
and phase angle of the wave induced shear stress of the Quasi-Laminar
Model with those of several turbulence models. For & > 0.07, the Quasi-
Laminar Model and all turbulence models yield similar results since the
disturbance field introduced by the wave surface is contained in a region
where the effects of turLuience on the wave induced flow are small.

For a < 3 x lO_5 all turbulence models predict similar variations of the
shear stress. 1In this range the effect of pressure gradient on the flow
is small. The flow can be visualized as one over a surface with radius
of curvature 1/R = -3 az cos (ax), an external velocity U = U (I + a cos (ax))
and a pressure gradient, 3P/3x = —’a az U°2° sin (ax). In the range 3 x 10_'5
<a < 9.03 the Equilibrium Turbulence#Model over predicts the effect of
pressure gradient and the only models which reliably predict both the
magnitude and phase angle of the shear stress are Model D* and the
Relaxation Model (not shown in Figures 7.1 and 7.2). Therefore this rise

is associated with relaxation effects. 1In fact for o > 7 x 10“4 relaxation

effects are such that the calculated effective pressure gradient can be
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as much as 90° out of phase with the calculated local pressure gradient
(Figure 7.3) causing the maximum in the wall shear stress to shift in
the upstream direction.

Measurements of the streamwise component of the turbulent kinetic
energy (see Figure 6.42) show that the kinetic energy close to the wave
surface reactes a maximum on the upstream side of the wave. This
finding provides further evidence that the turbulence close to the wall
in the range 3 X lO-5 < o < 0.02 is not in equilibrium with the local
pressure gradient, since (from laminarization arguments) it is expected
that the turbulent energy would reach a maximum on the downstream side

of the wave due to flow deceleration in this region.

The inclusion of curvature effects in Model D* causes a significant
improvement in the calculated phase angle of the wave induced pressure
(Figure 7.4 in the range 1 X 10_4 < o < 0.5). These results are of
particular importance in the prediction of instabilities at a gas liquid
interface where recent calculations of Frederick { 211 have indicated
that Model D* may be underpredicting the pressure.

In summary the presence of waves introduces two complications that
would not be present at a flat surface: Wave induced variations of the
pressure gradient along the wave surface can cause a thickening and
thinning of the viscous wall region. Wave induced curvature of the
streamlines can cause a change in turbulent transport which results in
a periodic enhancement and damping of the turbulence. Calculations
have shown that the wall shear stress measurements and in particular
the sharp change in the measured phase angle of, aT (o) eiax, at

o = 0.0015 provide an excellent test of turbulence models. Significant
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errors are obtained in predicting the wall shear stress if the influence
of the wave induced pressure gradient is ignored.

The sensitivity of Model Df to the vaiue of the relaxation parameter,
kL’ points out the need to introduce relaxation effects in a more funda-
mental way. Work along these lines using the K-¢ Model reveals qualitatively
the same behavior as Model D*. However Model D*, modified to include the
effect of streamline curvature on turbulence, provides the best overall

fit of the available pressure and shear stress measurements to date.
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APPENDIX A

CONDITIONS FOR LINEARITY

The necessary conditions for flow over a wavy surface to be
described by a linear form of the Novier Stokes equations are developed.

The flow field is considered as the sum of a mean and a wave

induced quantity.

]

U(x,y) = U(y) + u(x,y) (A.1)

V(x,y) =v(x,y) (A.2)

where the over bar and tilda represent a mean and a wave induced quantity

respectively. The wave induced streamwise velocity and velocity gradient

scale as

s dU  du du ,
D o aa;}; . (A.3)

since the presence of the wave surface with amplitude, a, displaces the

mean flow by an amount, a %p);, to a first order of approximation. From

continuity

v . du
3y aady . (A.4)

On integrating (A.4) from 0 to &, where § is a boundary layer thickness
du

V"aaa"@- (A.S)
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If v %g is taken as a typical ‘linear term, a comparison of the

ratio of nonlinear to linear terms yields

o |

(A.6)

a :
Ny (A.7)

Therefore in addition to aa being small, the additional requirement that

a/6 < 1 is necessary for the flow field to be described by linear equations.
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APPENDIX B
FORMULATION OF OUTER BOUNDARY CONDITION
The outer boundary condition is such that the flow field far from
the surface is just that which would be present over a flat surface.
This requires that the velocity field in boundary layer coordinates at
v, see Figure (b.1) be equated to the undisturbed flow in cartesian
coordinates.
For aasmall the velocity field in boundary layer coordinates at
Ym can be transformed into cartesian coordinates as follows:
= . iax
Uy (o) = UGk, y) - V(x, y,) icae (B.1)
. iax :
Vo(x, ym) = U(x, ym) icae + V(x, ym) (B.2)
where the subscript, o, denotes cartesian coordinates. If U and V
are written in terms of average and wave induced quantities,. equations
(B.1) and (B.2) neglecting o(az) terms become
= = ~ lox
Uo(x, ym) = U(ym) + aue (B.3)
. iax ~  doax
Vo (x, ym) = U(ym)iaae + vae . (B.4)
The cartesian description of the flow at (Ym + aelax) is obtained by a
Taylor series expansion at Ym as follows
U (x, y)
_ 0 iax
Uo(x, ym) = Uo(x, Ym) + 3y ae (B.5)
e
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Yaurtace = 887X

Figure B.l. Diagram for Development of Outer Boundary
Condition
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avo (x! Y) iax
Vo(x,ym) = Vo(X’Ym) + 5y ae 3 (B.6)
Y
m
Since the flow at Ym is considered undisturbed
Uo(x, Ym) = U(Ym) 1 ! (B.7)
Vo(x, Ym) =0 . (B.8)
Equations (B.3) and (B.4) can now be equated to (B.5) and (B.6)
respectively to yield
= o iax = du iax
U(ym) + au(ym)e = U(Ym) + E§‘(Ym)ae (B.9)
and
ﬁfym)iaaeiax + \'}aeio‘x =0 . (B.10)
On equating terms of similar order and introducing the stream function,
aFeiax, the following relations are obtained,
U(y) =Uu(y) (B.11)
du
' = St
F Oy =& On (B.12)
F(yy) =UGy). (B.13)

Equation (B.1l) implies that the average flow field is not disturbed
by the presence of the wave surface and equations (B.le and (B.13) are
the required boundary conditions for the wave induced flow for large

values of y.

- gy
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APPENDIX C

DERIVATION OF TURBULENT ENERGY AND DISSIPATION EQUATIONS

Consider a flow over a two dimensional curved surface. Use general
orthogonal coordinates with x measured along the surface, y normal to
the surface and z at right angles to the x~-y plane which is the plane
of motion. The curvature of the surface k(x) = 1/R(x), is taken as
positive for convex curvature and negative for concave curvature where,
R(x), is the radius of curvature of the surface. The elements of length
along the parallel curves and along the normal are hl = 1 + ky and

h, = 1. The element of length along the z direction is h3 = 1. If

o2

u, v, and w are the velocity components along the x, y, and z directions
repectively the following equations for u, v, and w are obtained (see

Bradshaw [ 8 ]).

continuity
au 9 3 .3
™ + 3y {(l + Ky)v} + 32 {(l + Ky)w} =0 (C.1)
X momentum
ou 1 u Ju ou Kuv 1 9p
e u =% v — K e
at (1 + xy) Yax TV 3y i 9z 1 + «y) (1 + ky) 23x
) 1 arxx aTxy Brxz 2|<rxz
+
(1 + xy) 9x i oy + 9z + (1+«xy) (C.2)



y momentum

v, 1 W, v, 3 __xu 2
at (1 + «ky) Y 5% 3y oz (1 + xy) 3y
+ 1 aTxy B vy aTyz B 1 ( L )
(1 + «y) 3x 3y 3z (1 + xy) XX yy
Z momentum
ow, 1 Bw, dw. 3w _ _3p
3t i (1 + «y) Y I oy + 9z 3z
1 9T ot at KT
¢ Xy , __yz 2z yz
(1 + «xy) X oy 9z A+ «y)
where
L -2 fooXt 83U Ky
Tx 2Sxx 2 (1 +xy) 3  (1+ ky) ]
=28 =22
yy yy oy
1 =25 =2
zz zz 9z
vE e 5 [_u 1w
Txy - ZSXY 1 + «y) [ay [(1 + Ky)] + (1 + ky) 93x ]
t =25 = |, W
yz yz 3z Jy
sgs o[, 1 aw
Txz = 2sz h [az + (1 + xy) ax]
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(C.3)

(C.4)

(C.5)

(C.6)

(c.7)

(c.8)

(C.9)

(C.10)



190

Consider a turbulent flow that is two dimensional in the mean.
Therefore, themean flow in the z direction is zero and all % of the
mean flow quantities vanish. If the equationsof motion are decomposed
into mean velocities U, V plus fluctuating velocities u', v', w' and

their corresponding pressures P and p' the following equation for the

turbulent kinetic energy can be derived (see Bradshaw [ 8]).

I
Y S R
3t (1 + ky) 3x 3y
11 III
— 1 9 (u'3+u'v'2+u'w'2+u'p' - u't!' - v't' - w't!
IV \4
_9 (vrur? & v'3 4 vwt? 4 vip' - u't! - v -w )
3y 7 xy yy yz
VI VII
_ K (v'u'2 +v'3 4 viw'? 4 vip' - u't! - v't! - w'r'z.)
1+ ky) 2 Xy yy yz
VIII
kv 1w
2y (1 + xy) (1 + ky) ox
VIII VIII
-u'2 1 ﬂ_{__ 2kV N V,2 oV
1 +«ky) ax (1 + xy) Ay
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IX
T' 1 v 1
XX du’ o du’ 1 ! ov
(1 + ky) ox Xy 3y (1 + ky) "xy ox
IX
v’ K K
+ 7' VA S B B v _ __ kK (]
'yy 3y L A +xy) Txx T @+ ey) Y xy
IX
T;z ow' aw' K dw'
e — | r= ] + [ ] — 1 R .
(1 +ky) 3x Tyz 3y (1 +«ky) v Tyz Y2z 3z (R
Jones and Launder [29] and Chien [13] have suggested the following
assumptions
3 2 v
u'" +u'v'” + u'w' 1 t 9K
+u'p’ = — = = (C.12)
2 (1 + xy) Vo, ox
2 2 v
| S | L 1 ]
vu +v - +vw +VTpT = - t 3K (C.13)
2 ch oy

The terms involving the fluctuating shear stress, Tij’ are generally
written as the sum of a term representing viscous diffusion of kinetic

energy and a term representing the isotropic dissipation of kinetic energy,

Tennekes and Lumley [69].

i _ 1 3 1 9K 9 | 3K
III + V + VII + IX = ziquz;y 3% ((1 + ky) 9% ] + 3y [ay]
" 2K
Tare fEC N sl
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2K
where the term -3 is included in order to balance the viscous diffusion

y
of turbulent kinetic energy y at the wall.

Equations for the velocity fluctuations u', v' and w' can be written

in cartesian tensor notation as follows (Tennekes and Lumley [69]).

U U, au du! du, du, 3p' 52u!
i Bl ! y i et 5 =l P i
_— + — +u — +u -u - u =Ns + (C.15)
3t 'k ax |k ox,  k3x Tk ax ko 8x; 3}{
du! odu!
An equation for the isotropic dissipation rate e o can be
k) 3
obtained by differentiating (C.15) with respect to X multiplying the
du!
resulting equation by 3;3 and taking the time average
n
I IT IT1
1)
I +U 3 13 - - op’ auk
ot k Bxk 3x, 9%, k axn X
v
- 1 V T
au aui auk Ju du
g 3 X 9x 4 ax ax
xk n k
\' VI VII
2, —or R T2, 92
; AT (4 uy duy duy !
“2%ax. “im '23_5_'3_' "2 S, (gl
%% n Xk n *x°*n

Jones and Launder [29] and Chien [13] have suggested the following

closure assumptions,
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Term III: Turbulent diffusion by velocity and pressure fluctuations,

v
L8

) 3e
III = — — (€.17)
axK VGE BxK

Terms V and VI: Generation by mean motion,

ClEPK

V4 VD=,

(C.18)

where PK is the production of turbulent kinetic energy,
Term VII: Dissipation of g,

2
VII = C £

£ 2e
Lo . (C.19)

d b

¢

where the second term is included to balance viscous diffusion of e at
the wall., The func¢tions fo and fd are defined in Chapter 3 [see equations

(3.63.1) and (3.63.2)].

Term VI: Generation by self stretching action of turbulence. The erfect
of this term is accounted for in the modeling of term IV (see Reynolds
(59D).

The dissipdtion equation with closure assumptions is then transformed

into boundary layer coordinates, euqation (3.62).
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APPENDIX D

DERIVATION OF STREAMLINE CURVATURE

In this appendix an expression for the curvature of the streamlines

in boundary layer coordinates is derived. Let g(x) be a position vector

describing the streamline y(x,y) = C where

Y
Yix,y) = j T (y)dy + Fae ™™ (D.1)
(o]

b(s) = (x(s), y(s)) (D.2)

>
If s is a measure of the arc length, then dgés) is a unit vector and the

magnitude of the curvature of the streamlines y(x,y) = C is given by

425 (s)

d52

In boundary layer coordinates

d _p xT +hn y'? (D.3)

where I% and Iy are unit vectors along and perpendicular to the wave surface

respectively. The metrics hx and hy are defined as
h =1+ «ky (D.4.1)

and

how 4.
. (D.4.2)

where k is the curvature of the wave surface. The primes denote differ-

entiation with respect to s, such that

r o dx(8) (.5.1)

X ds
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and
d
yr =8 (p.5.2)
Therefore
de -> > - <> > >
db_ ' x'? +h x"T +h x'i'+h'y'd +h y'i_ +h y'il . (D.6)
d52 X X X X X b4 y y y y y y
Also
+ ai’x a'{x
4 = r S [
x' =2 v 3y (.7.1)
-> -
- ai 91 ! .
I s} b ' y
x' =% +y 3y (D.7.2)
> -
aix - le
—é;=- Kiy 3 -a—y'—= 0 (D.8.1)
a1 s a1
_lax =K1l 3 _lay =0 (D.8.2)
Hence (D.7.1) and (D.7.2) become
I = —x'1 (D.9.1)
X y
I = 'l . (D.9.2)
v X
Equation (D.6) can now be written as
2>
db = " 1t 1 "o_ ' 2y
———dsz (hxx + hxx + hyy K) ZX+ (hyy th(x Y<) ly (D.10)



where to 0(a)

h; = aia3y eiax x' + aazy eiax y'
and
h! =0

Since Y(x,y) = C

4y

On differentiating (D.12) with respect to s and rearranging, x" and y"

can be written explicitly in terms of x' and y'

" " i ' 2 - ! 2 - t !
L L C P I SR A S A

>

Since

(x4 o7 -1

Now on differentiating (D.14) with respect to s

h}l{xl xll + y| y"

(D.13.2) and (D.15) can now be solved simultaneously for x" and y".

= ' 1
ds wxx + ¢yY

%%l = 1 and using equation (D.3)
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(D.

(D.

(D.

(D.

(D.

(D.

11.1)

11.2)

12)

13.1)

13.2)

14)

15)



Gy' - by (-hyx")

X
v '
by wyhx X
0 o B 1
. wxhxx Gx
y - \ 1]
Vil
Now to 0(a)
wx = F:i.maeimX
wxx - _FaZaeiax
wy =U + F'aeiax
wyy =T + F"ae™®*
wxy = iozF'aemx
Ly iax
wx/wy = = icae A

Substituting (D.18)-(D.23) into (D.12) and (D.1l4) and neglecting
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(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

(D.22)

(D.22)

terms of 0(a2) x' and y' can be expressed in terms of the stream function,

iax
aF e , as follows:

x' = (1 - aotzy'eio‘x

)

] iax

v =-£; icae
U

Substituting (D.18)-(D.23) into (D.16) and (D.17) and neglecting terms

of O(az),

(D.24)

(D.25)
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o0 iox
x" = ioyae (D.26)
Y" = % azaeld.x : o (D.27)
‘ a8
Substituting (D.24)-(D.27) into the expression for — and keeping terms
ds
of 0(a) the following equation for the magnitude of the curvature is
obtained
2> ==
Q_% = [F :.U] aaZeiax . (D.28)
ds U
In this study the sign of the curvature is defined such that a
convex surface has a positive radius of curvature and a concave surface
has a negative radius of curvature. With this convention
1 B (F :— U) aaz elax . (D.29)
R U
c
At the wave surface F — 0 and therefore
= actzeio‘X (D.30)

L
R
c

which is simply the curvature of the wave surface. For large y

F—»Uandhereﬁl———» 0
C
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APPENDIX E

FINITE BOUNDARY LAYER CALCULATION

In this appendix the details of the finite boundary layer calculation
are presented. As explained in Chapter 3 a finite boundary layer consists of
two layers. In the inner layer the mixing length is given by equation
(3.35) and in the outer layer the mixing length is given by equation (3.90).
In order to provide for a smooth transition between these two layers the

following composite expression is used across the entire boundary layer
= 1/2 —
% = y8 tanh (ky/y8) (1 - exp(-yt™ “/A)), (F.1)
The expression for lo has the correct asymptotic behavior since

)

v§ tanh (ky/y8) — «xy 7 == (E.2)
and
¥§ tanh (ky/y8) — ¥§ y > xs— P (E.3)

The wave induced components of R.o, Ve and 1, using equations

(E.1), (3.34) and (3.36), are found to be respectively

aﬁoeiax = ay$ tanh (ky/y8) exp (-y/A) [ % - % ]eiax, (E.4)
s 2 exp (-y/A) y T A )

avteiax = a _XY + — o = == ——t— eiax (E.S)
Sey [1-exp(-y/B)] (A2 A 2

S A BB G IS N A U Gn B o e
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\)t n _ R
Ve N 2— y' exp (-y/A) [y | A
{2—\;—+l]25xy— = -_——X:-
N o [1 - exp (-y/A)] (A fax
aTte = e . (E.
vt i
— U' exp (-y/A)y
1-
[1 - exp(-y/A)] A
For large values of y equations (E.4) - (E.6) are respectively
ag e %% = g (E.
[o]
e s ay262 28 e ' (E
v Xy
ate ™ = 42 YZSZIT—' (2 gxy) e1O¥ (E.

Calculations were made using the finite boundary layer form of
Model D*, equations (E.4)-(E.6). For boundary layer thicknesses § < 500,
it is not possible to sustain a turbulent boundary layer (see Cebeci
and Smith [12]). Therefore, this was the smallest value of § considered.

The calculations show that the effect of § on the wave induced
phase angle and amplitude of the shear stress and pressure is small
for any realistic boundary layer thickness, Figures (E.1l), (E.2), (E.3)

and (E.4) respectively.

6)

7)

.8)

9)
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Figure E.2. Effect of Finite Boundary Layer Thickness on
| T (o) | for Model D* k) = -35 and k= 1800
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Figure E.4. Effect of Finite Boundary Layer Thickness on
| (0)| for Model D* k) = -35 and k= 1800
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APPENDIX F

TABULATED DATA

This appendix presents in tabulated form the wave profile,
average shear stress and fluctuating shear stress distributions
reported in this work.

The wave profile data are reported in inches. The shear
stress and fluctuating shear stress data are reported in the

dimensionless form as discussed in Chapter 4.



Table F.1 Wave Profile Measurements

x Wave 93 Wave 83 Wave 63
A in. x 107 in. x 107 in. x10
0.00 29.00 30.00 30.00
0.05 28.00 29.00 28,50
0.10 26.00 28,00 28.00
0.15 24,00 22.50 22.50
0.20 20.00 22,00 22.00
0.25 16.00 17.00 17.00
0.30 12.00 13.00 13,00
0.35 8.00 9.50 9. 50
0.40 5.00 6.00 6.00
0.45 1.50 3.00 3.00
0.50 0.00 0.00 0.00
0.55 0.50 0.50 0.50
0.60 2.00 3.00 3.00
0.65 6.00 6.50 6.50
0.70 10.00 10.00 10.50
0.75 14.00 15.00 15.00
0.80 18.50 19.00 19.00
0.85 " 23.00 23.00 23.50
0.90 26.00 27.00 27.00
0.95 28.00 29.00 29,00
1.00 29.00 30.00 30.00
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Table F.2. Summary of Average Shear Stress Measurements

U, h/2

Run No. D 2 9 S
v N 3 -

W
1 5970.00 .00871 56.82 0.40
2 5970.00 .00871 56.00 0.40
3 5970.00 ,00871 56.70 0.43
4 6680.00 ,00787 50.00 0.38
5 6680.00 .00787 54,50 0.43
6 6680.00 .00787 52,00 0.39
7 8450.00 .00621 57.20 0.38
8 8450.00 .00621 59.00 0.42
9 8450.00 ,00621 60.00 0.39
10 8950.00 .00607 60.00 0.36
11 8950.00 .00607 63.40 0.39
12 8950.00 .00607 63.12 0.36
13 9650.00 .00566 60.30 0.41
14 9650.00 ,00566 63.00 0.41
15 9650.00 .00566 56.50 0.36
16 11400.00 .00489 65.00 0.32
17 11400.00 .00489 65.50 0.35
18 11400.00  .00489 65.70 0.34
19 13000.00 .00435 55.46 0.29
20 13000.00 ,00435 61,00 0.34
21 13000.00 .00435 64,14 0.37
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Table F.3, Summary of Average Shear Stress Measurements

Run No. Ub G 2 H: 8 w: tw
v Au T T
22 14600.00  .00389  69.80 0.31
23 14600.00  .00389  71.47 0.34
24 14600.00  .00389  65.00 0.36
25 15700.00  .00367  70.00 0.31
26 15700.00  .00367  76.50 0.33
27 15700.00  .00367  69.00 0.32
28 19800.00  .00297  73.40 0.27
29 19800.00  .00297  76.00 0.27
30 19800.00  .00297  76.00 0.25
31 19800.00  .00297  67.00 0.29
32 19800.00  .00297  76.00 0.29
33 19800.00  .00297  69.00 0.24
34 20600.00  .00287  74.00 0.23
35 20600.00 .00287  66.00 0.29
36 20600.00  .00287  71.00 0.27
37 27950.00  .00218  78.50 0.20
38 27950.00  .00218  80.60 0.21
39 27950.00  .00218  78.30 0.20
40 30620.00 .00201  86.40 0.16
41 30620.00 .00201  84.80 0.18
42 30620.00 .00201  86.00 0.17
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Table F.4. Summary of Average Shear Stress Measurements

Run No. ‘Ub h2 ’ H\; 6. V: iy
v Au @
43 34700.00 .00181 84,90 0.19
44 34700,00 .00181 77.38 0.20
45 36000.00 .00174 81.65 0.16
46 36000.00 .00174 81.00 0.14
47 36000.00 .00174 80.00 0.16
48 36000.00 .00174 81.20 0.17
49 36000,00 00174 83.00 0.16
50 58000.00 .00135 78.35 0.13
51 58000.00 .00135 73,27 0.15
52 58000,00 .00135 70.00 0,12
53 58000.00 .00135 73.00 0.11
54 64000.00 .00139 72.00 0.23
55 64000,00 .00139 73.00 0.11
56 71000.00 .000951 76,20 0.11
57 71000.00 .000951 67.00 0.13
58 71000.00 .000951 69.00 0.09
59 73500.00 .000912 71.00 0.10
60 73500.00 .000912 65,70 0.08
61 73500,00 .000912 68.50 0.09
62 73500.00 .000912 68.15 0.08
63 84500,00 .000813 58.65 0.08
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Table F.5. Summary of Average Shear Stress Measurements

Ub h/2 2 - T
Ruii No. o 6 2

v Au T T

w
64 84500.00 .000813 54,10 0.07
65 84500.00 .000813 57,00 0.06
66 102500.00 .000683 45,00 0.09
67 114500.00 .000618 28.00 0.06
68 122500.00 .000582 17.00 0.06
69 42500.00 .00151 79.00 0.17
70 50000.00 . «00129 77.00 0.13
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Table F.6. Summary of Fluctuating Shear Stress
Measurements

Run No. Ub h/2 Z2Iv

v Au* ’ S}'(z /gx
5 6680.00  .00787 77.00 .0523
6 6680.00  .00787 86.00 .0402
7 8450.00  .00621 80.86 L0448
8 8450.00 .00621 91.40 0497
9 8450.00  .00621 90.00 .0501
13 9650.00  .00566 84.00 .0502
14 9650.00 .00566 91.00 .0560
15 9650.00 .00566 90.00 .0351
20 13000.00  .00435 96.00 .0316
21 13000.00  .00435 92.00 .0416
25 15700.00 .00367 109.00 0300
26 15700.00 .00367 119.00 .0347
27 15700.00 .00367 108.00 0267
32 19800.00 .00297 117.00 0211
35 20600.00 .00287 100,00 .0196
36 20600.00 .00287 119.00 0264



Table F.7. Average Shear Stress Measurements

Tw/?w

% Run 1 Run 2 Run 3 Run 4 Run 5 Run 6
0.00 1.31 1,20 1.10 1.17 1.15 1.21
0.05 1.12 1.02 1.21 1.12 1.11 1.14
0.10 0.91 0.99 0.97 1.05 0.96 1.00
0.15 0.82 0.86 0.87 1.04 0.92 0.94
0.20 0.77 0.75 0.78 0.76 0.75 0.78
0.25 0.66 0.70 0.68 0.76 0.71 0.70
0.30 0.62 0.62 0.62 0.61 0.64 0.62
0.35 0.61 0.61 0.61 0.66 0.60 0.65
0.40 0.63 0.63 0.59 0.59 0.55 0.60
0.45  0.65 0.68  0.63 0.65 0.6l 0.66
0.50 0.68 0.77 0.72 0.68 0.66 0.72
0.95 0.85 0.82 0.79 0.78 0.78 0.79
0.60 0.99 0.93 1.07 0.94 0.99 0.88
0.65 1.15 1.15 1.12 1.11 1.18 1.19
0.70 1.27 1.28 1.31 1.20 1.31 1.24
0.75 1.35 1.34 1.32 1.33 1.42 1.34
0.80 1.35 1.40 1.45 1.34 1.35 1.39
0.85 1.40 1.42 1.32 1.44 1.42 1.40
0.90 1.37 1.34 1.46 1.35 1.42 1.29
0.95 1.31 1.31 1.23 1.28 1.32 1.27
1.00 1.18 1.22 1.12 1.14 1.15 1.21
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Table F.8. Average Shear Stress Measurements
Tw/;Q
= Run 7 Run8 Run9  Run 10 Run 11 Run 12
0.00 1.26 1.13 1.10 1.24 1.14 1.14
0.05 1.08 1.08 1.06 1.10 1.05 1.07
0.10 0.95 0.92 0.91 0.97 0.92 0.95
0.15 0.83 0.85 0.85 0.85 0.84 0.85
0.20 0.70 0.73 0.76 0.73 0.74 0.71
0.25 0.69 0.65 0.69 0.70 0.66 0.66
0.30 0.61 0.60 0.69 0.62 0.63 0.64
0.35 0.62 0.64 0.63 0.67 0.63 0.66
0.40 0.65 0.67 0.66 0.65 0.62 0.68
0.45 0.68 0.70 0.69 0.70 0.68 0.72
0.50 0.76 0.74 0.72 0.76 0.77 0.81
0.55 0.89 0.81 0.74 0.91 0.88 0.88
0.60 1,03 1.14 0.98 1.05 1.10 1.01
0.65 1.13 1.09 1.21 1.20 1.20 1.20
0.70 1.25 1.34 1.34 1.25 1.32 1.32
0.75 1.35 1.41 1.39 1.33 1.33 1.34
0.80 1.35 1.30 1.46 1.30 1.39 1.35
0.85 1.26 1.41 1.39 1.33 1.35 1.33
0.90 1.38 1.46 1.34 1.31 1.36 1.27
0.95 1.33 1.15 1.26 1.21 1.23 1.24
1.00 1.21 1,20 1.15 1.13 1.15 1.16
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Table F.9. Average Shear Stress Measurements

¢
- O N S G R B O G B GE T B W e B aE e

TW/?W
% Run 13 Run 14 Run 15 Run 16 Run 17 Run 18
0.00 1.16 1.12 1.16 1.20 1.18 1.09
0.05 1.06 1.04 1.08 1.08 1.02 1.04
0.10 0.94 0.91 0.97 0.95 1.04 0.93
0.15 0.81 0.81 0.88 | 0.84 0.83 0.83
0.20 0.71 0.74 0.78 0.72 0.67 0.69
0.25 0.67 0.66 0.68 0.70 0.67 0.68
0.30 0.60 0.64 0.65 0.66 0.67 0.67
0.35 0.63 0.63 0.65 0.71 0.66 0.69
0.40 0.62 0.62 0.68 0.71 0.69 0.72
0.45 0.66 0.63 0.72 0.74 0.71 0.77
0.50 0.73 0.76 0.77 0.83 0.83 0.83
0.55 0.88 0.80 0.81 0.95 0.97 0.96
0.60 1.03 1.07 0.95 1.09 1.02 1.04
0.65 1.17 1.22 1.14 1.18 1.20 1.22
0.70 1.32 1.37 1.29 1982V7. 1.31 1.30
0.75 1.37 1.39 1.30 1.31 1.33 1.32
0.80 1.37 1.45 1.36 1.25 1.35 1.31
0.85 ~ 1.39 1.41 1.34 1.29 1.29 1.31
0.90 1.39 1.34 1.34 1.26 1.31 1.28
0.95 1.30 1.26 1.27 1.15 1.18 1.19
1.00 1.19 1.14 1.16 1.11 1.08 1,13



Table F.10, Average Shear Stress Measurements

Tw/'-l'-w
‘§ Run 19 Run 20 Run 21 Run 22 Run 23  Run 24
0.00 1.22 1.16 1.14 1.18 1.07 1.06
0.05 1.15 1.09 1.06 1.02 1.04 1.02
0.10 1.00 0.96 0.94 0.95 0.90 0.91
0.15 0.91 0.85 0.83 0.79 0.80 0.81
0.20 0.78 0.77 0.75 0.74 0.76 0.70
0.25 0.75 0.69 0.68 0.68 0.66 0.68
0.30 0.71 0.66 0.67 0.67 0.68 0.67
0.35 0.69 0.69 0.67 0.70 0.67 0.72
0.40 0.71 0.71 0.65 0.76 0.69 0.75
0.45 0.79 0.74 0.63 0.81 0.77 0.78
0.50 0.81 0.76 0.75 0.85 0.87 0.85
0.55 0.90 0.85 0.89 0.96 0.94 0.95
0.60 1.03 1.01 1.12 1.13 1.15 1.09
0.65 1.03 1.20 1.19 1.16 1.20 1.23
0.70 1.26 1.30 1.35 1.34 1.33 1.32
0.75 1.26 1.31 1.33 1.25 1.31 1.30
0.80 1.20 1.35 1.38 1.29 1.34 1.31
0.85 1.26 1.30 1.31 1.24 1.26 1.30
0.90 1.22 1.27 1.37 1.25 1.29 1.23
0.95 1.21 1.20 1.21 1.15 1.17 1.18
1.00 1.10 1.14 1.07 1.10 1.10 1.14
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Table F.1ll. Average Shear Stress Measurements

TW /?W
% Run 25 Run 26 Run 27 Run 28 Run 29  Run 30
0.00 1.10 1.05 1.09 1.13 1.08 1.10
0.05 1,04 0.98 1.07 1.02 0.95 1.00
0.10 0.92 0.86 0.94 0.91 0.93 0.95
0.15 0.81 0.81 0.84 0.81 0.81 0.86
0.20 0.73 0.74 0.73 0.76 0.77 0.79
0.25 0.69 0.69 0.63 0.71 0.71 0.71
0.30 0.67 0.70 0.68 0.71 0.74 0.72
0.35 0.74 0.72 0.70 0.75 0.76 0.74
0.40 0.74 0.75 0.78 0.81 0.81 0.81
0.45 0.77 0.80 0.81 0.84 0.83 0.87
0.50 0.83 0.86 0.84 0.87 0.93 0.92
0.55 1.00 0.98 0.92 1.01 1.01 0.97
0.60 1.11 1.15 1.09 1.08 1.12 1.17
0.65 1.23 1.23 1.24 1.19 1.16 1.15
0.70 1.25 1.31 1.32 1.21 1.25 1.27
0.75 1.26 1.34 1.34 1.28 1.22 1.30
0.80 1.26 1.31 1.23 .21 1.29 1.17
0.85 1.26 1.28 1.29 27 1.23 1.26
0.90 1.26 1.32 1.16 1.19 1.21 1.08
0.95 1.25 1.18 1.15 1.18 1.13 1.06
1.00 1.07 0.95 1.14 1.04 1.07 1.11
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Table F.12. Average Shear Stress Measurements '
TW/TW '
% Run 31 Run 32 Run 33 Run 34 Run 35 Run 36
- [
0.00 1.16 1.05 1.10 1.12 1.12 1.14
0.05 1.02 0.98 1.04 1.06 1.07 1.09 '
0.10 0.94 0.88 0.93 0.94 0.91 0.93
0.15 0.80 0.83 0.88 0.85 0.88 0.86 l
0.20 0.77 0.76 0.80 0.76 0.77 0.78 '
0.25 0.70 0.75 0.74 0.78 0.74 0.66
0.30  0.72  0.75  0.75  0.75  0.71  0.69 l
0.35 0.74 0.75 0.81 0.80 0.76 0..67 >
0.40 0.79 0.75 0.80 0.83 0.71 0.86 '
0.45 0.80 0.85 0.83 0.87 1 5 0.75 0.86
0.50 0.85 0.90 0.89 0.87 0.84 0.88 l
0.55 0.95 0.97 0.95 1.02 0.94 0.94 l
0.60 1.08 1.13 1.03 ~1.08 1.12 1.10
0.65 1.14 1.19 1.22 1.15 1.17 1.23 l
0.70 1.22 1.25 1.14 1.20 1.26 1.25
0.75 1.25 1.31 1.24 1.23 1.28 1.29 .
0.80 1;25 1.28 1.27 1.18 1.26 1.21
0.85 1.25 1.25 1.25 1.23 1.19 1.20 '
0.90 1.25 1.29 1.16 1.18 1.25 1.10 '
0.95 1.21 1.16 1.09 1.11 1.14 1.20
1.00 1.12 0.93 1.08 0.98 1.12 1.07 l
]
i
|
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Table F.13. Average Shear Stress Measurements

Tw/?w
% Run 37 Run 38 Run 39 Run 40 Run 41 Run 42
0.00 1.08 1.03 1.02 1.05 0.99 0.87
0.05 1.00 0.99 0.98 1.02 1.00 ~ 1.03
0.10 0.93 0.89 0.91 0.90 0.88 0.91
0.15  0.84 0.86 0.85 0.86 0.88 .0.89
0.20 0.80 10.81 0.80 0.8l 0.82 0.81 .
0.25 0.81 0.79 0.79 0,85 0.84 0.84
0.30 0.80 0.79 0.83 0.80 0.81 0.84
0.35 0.86 0.84 0.87 0.91 0.87 0.92
0.40 0.88 0.87 0.89 0.88 0.90 - 0.91
0.45 0.89 0.92 ©  0.84 0.93 -0.93 0.92
0.50 0.92 0.95 0.94 0.98 0.96 0.98
0.55 1.00 0.99 0.97 1.04 0.99 1.02
0.60 1.10 1.11 1.09 1.08 1.10 1.06
0.65 1.14 1L il 1.16 1.14 1.13 1.12
0.70 1.19 1.21 1.20 1.17 1.18 1.16
0.75 1.19 1.21 1.18 1.19 1.20 1.18
0.80 1.16 1.19 1.20 1.10 1.18 1415
0.85 1.16 1.16 1.17 1.15 1.18 1.17
0.90 1.16 1.18 1.14 1.10 1.16 1.10
0.95 1.08 1.08 110 1.03 1.08 1,08
1.00 1.01 1.00 oS 1.00 0.92 1.03



Table F.l4. Average Shear Stress Measurements

TW/TW
-;% Run 43 Run 44 Run 45 Run 46 Run 47 Run 48
0.00 0.97 1.01 1.07 1.00 1.05" 1.02
0.05 0.98 1.01 1.0l 1.01 0.97 0.97
0.10 0.86 0.89 0.92 0.91 0.90 0.91
0.15 0.89 0.92 0.87 0.92 0.85 0.90
0.20 0.81 0.87 0.84 0.85 0.83 0.86
0.25 0.87 0.87 0.85 0.89 0.84 0.82
0.30 0.84 0.85 0.82 0.86 - 0.86 0.86 -
0.35 0.86 0.92 0.90 0.93 0.90 °  0.85
0.40 0.87 0.86 0.91 0.90 0.90 0.91
0.45 0.89 0.88 0.93 0.93 0.91 0.96
0.50 0.91 0.96 0.96 0.96 0.95 0.99
0.55 0.99 0.98 1.01 1.00 1.01 0.97
0.60 1.07 0.99 1.08 1.03 1.06 1.06
0.65 1.17 1.18 Iollz 1.14 1.12 1.07
0.70 1.14 1.06 1.15 1.13 1.15 1.18
0.75 1.26 1.19 1.18 1.16 1.17 1.19
0.80 1.16  1.16 1.14 1.12 1.14 1.14
0.85 1.21 % 21 1.13 1.16 1.15 1.11
0.90 1.16 1.08 1.11 1.08 1.13 1.19
0.95  1.12 1.06 1.06 1.07 1.09 1.06
1.00 0.97 1.05 0.96 1.00 1.01 0.99
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Table F.15, Average Shear Stress Measurements

Tw/¥§
% . Run 49 Run 50 Run 51 Run 52 Run 53 Run 54
0.00 1.01 1.06 1.01 1.03 1.02 1.06
0.05 0.96 1.00 1.02 1.03 1.04 1.00
0.10 0.91 0.95 0.92 1.00 0.98 0.99
0.15 0.89 0.87 0.87 0.92 0.92 0.92
0.20 0.86 0.85 0.90 0.87 1 0.90 0.89
0.25 0.84 0.92 0.92 0.89 0.90 0.95
0.30 0.86 0.82 0.91 0.89 0.91 0.90
0.35 0.90 0.92 0.92 0.93 0.94 1 0.91
0.40 0.90 -0.93 .0.82 ,0.91_ 0.93 0.94
0.45 0.93 0.92 0.84 0.93 0.93 0.92
0.50 0.95 0.95 0.86 'VQ.?A 0.95 0f96
0.55 0.98 . 0,98 0.91 0.95 0.96 0.97
0.60 - 1,07 - 1.04 1,00 Q.96 1.03 1.03
0.65 1.07 1.08 1.07 . 1.11 1.08 1.07
0.70 1.15 1.16 1.19 1.12 1.09 1.12
0.75 “1.15 1.15 . 1.18 1.12 1.12 1.10
0.80 1.16. 1.08 1.18 21,12 1.12 1.04
0.85 1.16 1.13 1.19 1.11 i.ll 1.10
0.90 1.15 1.11 1.21 1.07 1.05 1.10
0.95 1.09 | 1.09 1.12 1.05 1.01 1.06
1.00 1.02 0.98 0.99 1.05 1.00 0.98
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Table F.16. Average Shear Stress Measurements
/T 1
% Run 55 Run 56 Run 57 Run 58 Run 59 Run 60 '
0.00 0.99 1.04 1.02 1.07 1.04 1.01
0.05 1.00 0.98 1.04 1.04 1.01 1.02 l
0.10 0.94 0.93 0.94 1.02 0.97 0.97 .
0.15 0.95 0.88 0.89 0.94 0.92 0.98
0.20 0.93 0.90 0.98 0.89 0.91 0.97 '
0.25 0.92 0.94 0.93 0.92 0.90 0.94
0.30 0.90 0.85 0.92 0.90 0.90 0.92 l
0.35 0.95 0.93 0.84 0.93 0.94 0.96 .
0.40 0.94 0.95 0.86 0.89 0.94 0.93 l
0.45 0.92 0.94 0.87 0.94 0.94 0.92 l
0.50 0.96 0.91 0.84 0.96 0.96 0.93
OAGS 0.97 0.97 0.87 0.99 0.96 0.96 l
0.60 0.98 1.01 0.96 1.95 1.02 0.99
0.65 1.09 1.05 1.05 1.08 1.04 1.07 I
0.70 1.10 1.16 1.16 1.08 1.10 1.08 .
0.75 1,14 1.16 1.16 1.07 1.08 1.09 '
0.80 1.13 1.07 1.21 1.07 1.10 1.11 .
0.85 1.09 1.12 1.16 1.08 1.10 1.07
0.90 1.06 1.11 1.19 1.03 1.1 1.05 I
0.95 1.04 1.09 1.09 1.01 1.07 1.03
1.00 1.04 1.00 1.02 1.02 0.99  1.02 .
f
§
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Table F.l17. Average Shear Stress Measurements

TW/TW

%- Run 61 Run 62 Run 63 Run 64 Run 65 Run 66
0.00 1.06 1.00 1.03 0.97 0.98 1.06
0.05 1.01 1.01 1.03 1.01 1.03 1.01
0.10 0.99 0.97 0.98 0.93 0.99 1.03
0.15 0.91 0.96 0.96 0.93 1.00 0.97
0.20 0.92 0.96 0.91 0.91 0.97 0.95
0.25 0.95 0.95 0.99 0.97 0.96 0.94
0.30 0.90 0.92 0.89 0.92 0.94 0.91
0.35 0.93 0.96 0.95 0.94 0.98 0.93
0.40 0.95 0.93 0.91 0.96 0.93 0.95
0.45 0.93 0.92 0.95 0.91 0.92 0.91
0.50 0.95 0.94 0.96 0.92 0.93 0.92
0.55 0.96 0.96 0.96 0.97 0.93 0.94
0.60 1.02 0.97 0.97 1.05 0.93 0.99
0.65 1.06 1,07 1.04 1.09 1.05 1.01
0.70 1.10 1.09 1.07 1.12 1.04 1.07
0.75 1.08 1.09 1.09 1.12 1.09 1.04
0.80 1.03 1.12 1.00 1.15 1.09 1.08
0.85 1.09 1.07 1.12 1.15 1.10 1.10
0.90 1.10 1.06 1.09 1.09 1.04 1.11
0.95 1.08 1.05 1.11 0.97 1.04 1.10
1.00 0.99 1.00 0.98 0.93 1.06 1.05



Table F.18., Average Shear Stress Measurements

% Run 67 Run 68
0.00 1.03 1.04
0.05 1.08 1.09
0.10 1.06 1.06
0.15 1.02 1.03
0.20 0.97 0.97
0.25 1.01 1.00
0.30 0.93 0.93
0.35 0.96 0.97
0.40 0.94 0.94
0.45 0.96 0.92
0.50 0.94 0.94
0.55 0.93 0.93
0.60 0.95 0.96
0.65 0.98 1.01
0.70 1.03 1.03
0.75 1.05 1.03
0.80 1.02 1{65
0.85 1.03 1.03
0.90 1.02 1.02
0.95 1.04 1.03
1.00 1.02 1.01
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Table F.19. Fluctuating Shear Stress Measurements

N .

7,

% Run 5 Run 6 Run 7 Run 8 Run 9 Run 15
0.00 0.29 0.31 0.32 0.28 0.28 0.30
0.05 0.29 0.31 0.30 0.30 0.29 0.30
0.10 0.27 0.29 0.27 0.26 0.26 0.29
0.15 0.30 0.30 0.27 0.27 0.26 0.28
0.20 0.25 0.27 0.24 0.24 0.25 0.27
0.25 0.27 0.26 0.26 0.25 0.25 0.26
0.30 0.26 0.26 0.24 0.24 0.28 0.26
0.35 0.25 0.28 .0.26 0.26 0.27 0.28
0.40 0.24 0.26 0.27 0.28 0.27 0.28
0.45 0.27 0.29 0.29 0.31 0.29 0.30
0.50 0.28 0.31 0.29 0.28 0.29 0.31
0.55 '0.28 0.31 0.31 0.29 0.28 0.31
0.60 0.32 0.32 0.32 0.34 0.33 0.31
0.65 0.36 0.38 0.33 0.34 0.36 0,33
0.70 0.37 0.35 0.34 0.36 0.36 0.34
0.75 0.37 0.34 0.36 0.36 0.36 0.34
0.80 0.33 0.34 0.34 0.31 0.36 0.34
0.85 0.35 0.34 0.30 0.34 0.34 0.32
0.90 0.34 0.31 0.34 0.36 0.33 0.32
0.95 0.33 0.52 0.34 0.28 0.32 0.32
1.00 0.30 0.31 0.31 0.31 0.30 0.29
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Table F.20. Fluctuating Shear Stress Measurements

/s12/5
X X

/ S
-% Run 13 Run 16 Run 20 Run 21  Run 25 Run 26
0.00 0.30 0.29 0.29 0.28 0.27 0.25
0.05 0.29 0.28 0.29 0.29 0.29 0.25
0.10 0.28 0.27 0.28 0.27 0.26 0.25
0.15 0.26 0.25 0.27 0.27 0.25 0.25
0.20 0.25 0.26 0.27 0.26 0.24 0.24
0.25 0.25 0.24 0.26 0.25 0.25 0.24
0.30 0.25 0.25 0.26 0.26 0.25 0.25
0.35 0.27 0.26 0.27 0.27 0.28 0.28
0.40 0.26 0.27 0.27 0.26 0.28 0.28
0.45 0.28 0.26 0.28 0.26 0.29 0.30
0.50 0.28 0.31 0.29 0.28 0.29 0.28
0.55 0.31 0.27 0.31 0.29 0.30 0.30

0.60 0.33 0.34 0.32 0.34 0.32 0.32

0.65 0.35 0.35 0.33 0.33 0.31 0.31
0.70 0.36 0.38 0.33 0.35 0.32 0.31
0.75 0.35 0.36 0.32 0.34 0.31 0.32
0.80 0.35 0.35 0.33 0.33 0.29 0.30
0.85 0.35 0.34 0.31 0.32 0.29 0.29
0.90 0.34 0.33 0.30 0.33 0.30 0.30
0.95 0.33 0.31 0.30 0.30 0.30 0.29

1.00 0.31 0.29 0.29 0.27 0.26 0.24




Table F.21. Fluctuating Shear Stress Measurements

20,
% Run 27 Run 32 Run 35 Run 36
0.00 0.28 0.25 0.26 0.26
0.05 0.28 0.25 0.26 0.26
0.10 0.27 0.23 0.24 0.25
0.15 0.25 0.24 0.25  0.25
0.20 0.25 0.24 0.24 0.25
0.25 0.23 0.25 0.24 0.21
0.30 0.25 0.26 0.24 0.24
0.35 0.26 0.25 0.27 0.24
0.40 0.28 0.26 0.26 0.28
0.45 0.29 0.29 0.26 0.27
0.50 0.29 0.27 0.25 0.29
0.55 0.30 0.26 0.27 0.28
0.60 0.30 0.28 0.29 0.30
0.65 0.32 0.28 0.27 0.30
0.70 0.32 0.28 0.29 0.29
0.75 0.31 0.29 0.30 0.29
0.80 0.27 0.28 0.28 0.27
0.85 0.29 0.27 0.26 0.26
0.90 0.27 0.28 0.28 0.25
0.95 0.26 0.26 0.26 0.27
1.00 0.28 0.21 0.26 0.25
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APPENDIX G

ELECTROCHEMICAL MEASUREMENTS

The physical and chemical properties of the elctrochemical solution

are given in this appendix.

Physical Properties

All the electrochemical measurements required the determination of
the kinematic viscosity, demsity, concentration of active specie and
mass diffusivity. The viscosity was measured after each run with a
No. 50 Otswald viscometer. The density was determined by hydrometer
immersion. The concentration was obtained using standard titration
for potassium iodide. The diffusion coefficient for the iodine was

calculated from the following correlation (see Zilker [77]),

log = -1.07291 log10 v -7.15278 (G.1)

10P

where v is the kinematic viscosity. Table G.1 summarizes the physical

and chemical properties of the electrolyte.



Table G.1.

228

Physical and Chemical Properties of Electrolyte

Property

Viscosity (P)

Density (g/cm3)

Kinematic Viscosity (cm2/s)

Mass Diffusivity (cmz/sec)

Schmidt Number

KI Concentration (moles/liter)

12 (I;) Concentration (moles/liter)

Temperature (C°)

0.00858
1.023
0.00839
1.188 x 107°

707

0.103 - .2
0.00131 - 0.00146

26
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APPENDIX H l
ANALYSIS OF RAW DATA l
In this appendix the method used in analyzing the raw data is
outlined. All electrodes, are assumed to have the same area. The '
instantaneous current measured at the jth electrode is .
E,
I. = il (H°l)
3T R l
where E, = (V. -V . Here V_ is the instantaneous measured voltage
| o app) )
and Vapp is the applied voltage. The term Rf is the feedback resistance.
The average current at the jth electrode is given by I
v i
] &l
T, S
k| R n (H.2)
i [
where E;L is the ith voltage sampled by the A/D converter and n is the
total number of samples gathered. The average shear stress at the l
jth electrode is obtained from equation (4.5)
T OE, 3 -
L i I
R (H.3)
d an l
=
) '
= ¢ . (5.3)
Rf I
— n i b,
where E, = ) E./n.
i=1 |
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The wave averaged shear stress is obtained by summing (rw)j over

all j,

where m is number of electrodes. The dimensionless quantity,

(ij/1% ) = (TWd)j/<de>, is then

where

d

(H.5)

(H.6)

(H.7)

(H.8)

The local intensity of the fluctuating shear stress is found using

equation (4.6) to be

(H.9)
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The local root mean square value of the fluctuating shear stress is
== Som mm Rl
r}'{z (E2 - B2)
=3 -1 (H.10)
T E,
w 3

and the absolute root mean square value of the fluctuating shear stress

is obtained by multiplying equation (H.9) by equation (H.6)

— -5  _s5 1/2 -
/12 E - B £
—X | =3 J N , (H.11)

Ty (EJ.) (EY)

where s; = Ju'/d9y and g; = 3U/3y are respectively, the dimensionless

fluctuating and wave averaged velocity gradient evaluated at the wall.
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APPENDIX I

LEAST SQUARES ANALYSIS

The surface shear stress data are fitted with a Fourier series.
The computer program Data is set up to calculate the first four harmonics
if necessary, however, onlyone harmonic was used in fitting the data. The
Fourier coefficients are obtained by performing a least squares analysis

as follows:

let f(x) be a function that has a period 2n/a. Then the Fourier series

representation of f(x) is

N
f&ﬁ =f + g(%lws(mmﬁ-+bnsm,mmaﬂ (1.1)
J
¥ O£(x,)
I T
f=-— (1.2)
J

where xj is the location of jth electrode. The spacing between the

electrodes is assumed constant in the analysis that follows.

The error function E is defined as

J
E = X e, (I.3)
=1
where
_ X 2
ej = [f(xj) - f - § (an cos (anxj) + bn sin (anxj))] (1.4)
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The constants a, and bn are found by minimizing the error function with

respect to a_ and b
n n

ol 9F N (1.5)

Substituting equation (I.4) into (I.3) and using equation (I.5)

yields

f
[ e
=1 2

J
g (f(xj) -f) cos (naxj) (an cos (anxj) +bn sin (cmxj )) cos (naxj) (1I.6)

(an cos (omxj) + bn sin (anxj)) sin (naxj) LI.7)

[l
[l e 1
=1

J
Z (£(x.) -f) sin (nax,)
g g i

Equations (I1.6) and (I.7) represent 2N equations in 2N unknowns,

a and bn (n=1, ...,N). The function f(x), can be written as follows

=, V. 2 212
f(x) = £ + Z (an + bn) cos (anx + Bn) (1.8)
1
where
6 = tan © (=b_/a ) (1.9)
. an N R

Il = Ba = EBE e
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APPENDIX J

CORRECTION OF INTENSITY DATA

In this appendix the measurements of 5;2 /Ei{are corrected
for both frequency and spatial averaging as suggested by Mitchell and
Hanratty [47]. The results are summarized in Tables J.l and J.2,
where L+ is the effective electrode length, Wm = 211 (0.009) is the
median frequency of Sx in pipe turbulence, Sc is the Schmidt number

and A is the circumferential scale for mass transfer fluctuations.

(K]

12.

They have presented curves of l/A? vs. (L#W+3cl/2) and v QTE./ Y E;7
2,1/2
) /

Mitchell and Hanratty have suggested that for pipe turbulence A
vs. (1/A) where (1/A is the correction factor which accounts
for frequency averaging and v k'2 / /&52 is the correction factor which

accounts for spatial averaging. Here k'2

is the corrected intensity
of the mass transfer fluctuation and ké is the measured intensity of

the mass transfer fluctuations.
It should be noted that the values of /siz/g; listed in this
appendix refer to the wave induced components of the fluctuating

shear stress.



Correction of Fluctuating Shear Stress Measurements

Table J.1.

7 1
. o+ L+W; 3/2 172 " :TE =
m

0.00787 6.442 3.355 .5369 - 1.09
0.00621 8.162 4,25 .6802 - 1.22
0.00565 8.974 4.674 .748 - 1.26
0.0045 11.267 5.868 .939 1.07 1.29
0.00367 13.816 7.915 1.151 1.11 1.40
0.00297 17.07 8.9 1.422 1.15 1.48
0.00287 17.66 9.201 1.472 1.155 1.5
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Table J.2
Correction of Fluctuating Shear Stress Measurements
2 f12 /112 V2 12 Y3
S, S, k S, 1 Sy k l
< s RY. g A S — A
Sx SX Y kéz Sx sx /k%z

0.0462 0.0462 0.0483 0.048

0.0482 0.0482 0.053 0.053

0.0465 0.0465 0.0528 0.0528
0.0366 0.0392 0.0416 0.0445
0.0305 0.0338 0.0374 0.0397
0.0211 0.0243 0.025 0.0295
0.0230 0.0265 0.0280 0.0325




237

APPENDIX K

NUMERICAL FORMULATION OF WAVE INDUCED EQUATIONS

In this appendix equations (3.13)-(3.17) are set up in a suitable
form for numerical solution using the techniques described in Chapter 5.
The differential equation describing the wave induced flow using
the zero equation turbulence models is a fourth order equation. Since
the dependent variable, the stream function, F, is a complex quantity
the differential equation is solved as an eighth order system. This
is achieved by splitting F into its real and imaginary parts and

introducing the following variables,

CIRRERL: T e

— 1 - L}

%y = Fy gy =G

i " = "

b3 Fr 4y Fy
o = Ty byom R .1

Equation (3.13) can be written as follows:
F'"" = ao(y)F + al(y)F' + az(y)F" + a3(y)F"' + g(y) (K.2)

where ao(y), al(y), az(y) and a3(y) are the complex coefficients of
the derivatives of the stream function and g(y) is the complex non-
homogeneous term. Equation (K.2), can be expressed in real and

imaginary form as follows.



e N

+ i [?
O

where

a

Fllll = FIHI + iFlHl
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(K.3.1)

- a F + a F' - a F' + a F” - F" + a Fl” - a F”"|
0I I R R I ZR R I 3R R 31 I
F.+a F_+a, F!'+a F'+a F'+a_  F'+4+a_F" +a F"']
R OR 1 I ZI R 2R I 3I R 3R I
gR + igI (K.3.2)
ag = a, ia (K.4.1)
a; = a3 ia (K.4.2)
R
a, = a, ia (K.4.3)
R
a, ='a3 ia (K.4.4)
R
g = g + igI (K.4.5)

Equation (K.3.2) can be written in a form similar to equation (5.61),

0

1

0

0 | (K.5)




T'he boundary conditions are

and at

large

F' =0 at y = 0

F' = U' at large y.

conditions are: at y =0,

0o 0 0] _¢l‘
0 0 0 |ey|

0 0 0|4,
1 0 oo,
',
%
b

L %8 .

0o 0 0] -¢1-
o 0 o 4,
0 0 0|4, i
1 0 o4,
i ;
%
by
bg

g

(o)
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(K.6)

K.7)

(K.8)

- aE ay ay e am

;s -l Ex
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Since the number of boundary conditions at the wave surface and
at large y are both equal to two, there is no preferred direction of
integration. In the computations carried out in this thesis, the
direction of integration is toward the wave surface. Hence y = 0 = b
and y — y_ = a.
The particular solution Fp is generated by solving the system of
equations (K.5) subject to the boundary condition
-i;_
ﬁv
0
0
Fp =10 at large vy.
0
0
LY (.9)

The required solution to equation (K.3.2) could be obtained by
generating a particular solution satisfying equation (K.9) and eight
independent homogeneous solutions. The required solution would then be
obtained by forming a linear combination of the eight homogeneous
solutions and the particular solution. However by suitable choice of
the homogeneous solutions at ¥, 1t is necessary to generate only four

homogeneous solutions. This is demonstrated below.
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Let the eight homogeneous solutioms at y_ satisfy
0 0 0 0
0 0 0 0
1 0 0 0
F, (y)= |0 F, (y)= 11| F ()= 0| F (v)=]0
Hl H2 H3 H4
0 0 0 0
0 0 0 0
0 0 |1 0
_O, | 0] | 0 | Ll_
1 0 0 0
0 1 0 0
0 0 0 0
F,. )= 1{0| F, (y,)= 10 F, o (y)= |0, F, ()= 10
H5 H6 H7 H8
0 0 1 0
0 0 1 1
0 0 0 0
i 0. LA 01 L (k.10)
The required solution is,
F=F +c¢, F +c F +c_F + ¢ F + c_F + ¢ F
P 1 Hl 2 H2 3 H3 4 H4 5 H5 6 H6
+ c5 FH7 + cg FH8 " (K.11)

o
g ;
Y
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The above combination must satisfy the boundary conditions at
V> equation (K.8), hence using these conditionms,

0O 0 0 01 0 0 O ~cl" U U
0 000 01 0O c, U U
0O 0 0 0 0O 1 O Cq + 0 = 0 d
0 0 00 0 0 0 1 04 O, 0

‘s

‘6

7

K.12

In order for the above equations to be satisfied Cgs Cg» <

and c, must be zero. Therefore, it is necessary to generate only

8

four independent homogeneous solutions. The constants,c, - cé,are

1

determined once FH - FH and F_ have been integrated to y = 0, by
1 4

satisfying the boundary conditions at y = 0.

The K-e Model equations (3.72)-(3.77.2) was solved using the same
technique outlined above, The K-¢ Model requires the solution of an
eighth order complex differential equation which is then converted
into a sixteenth order real system. This is achieved by splitting
the stream function, F, the kinetic energy, ﬁ, and the dissipation

rate, €, into real and imaginary parts and introducing the following

variables:
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¢l = FR ¢9 = FI
= ' = L
9, = Fg %10 = F1
— " = 3]
¢y = Fp Rl
_ m = @
¢, = Fp 912 = F1
¢5 = kg 913 = kg
=41 = Tt
%6 = kg By,
%7 = %R ®15 T f1
bg = Efz $16 éi (K.13)
The K-e& Model equations (3.13), (3.72) and (3.73) can be organized
in a similar manner to equation (K-3)
F"' = ao(y)F + al(y)F' + az(y)F" + a3F”'
+ a4(y)k + as(y)k' + a6(y)e + a7(y)e' + g (K.14)
K" = by(y)F + b (NEF' + b4<y)12 + bs(y)ﬁ
+ bs(y)é +b (e + £, (K.15)
e" = co(y)F + cl(y)F' + c4(y)ﬁ + cs(y)ﬁ'
+eg(e + e (e +h (K.16)

where the ai(y), bi(y) and ci(y) are the complex coefficients such

that

A Iy g Ty N S AN N AN B B A B AW Ban g A am s



-

ai(y)

bi(y)

cI(y) =

The system

of equations

similar to equation (5.6)

where

FR
FI
0 0 0
1 0 0
0 1 0
a a
2R 3R
0 0 0
0 0 b
0 0 0
0 0 c
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(K.17.1)

(K.17.2)

(K.17.3)

(K.14)-(K~17) can be written in a form

- FI
Fr
0 0
o o0
o o0
a a
‘R Or
11
b, b
‘R R
o 1
c C
‘" x

c (K.18)

(K.19)
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o 0o o0 0 o0 o0 0 O
0o 0o 0 o0 o0 0 0 ©
o 06 0 0 0 0 0 O

F_=| %o %1, %2 %3 % % % 7y (K. 20)

The boundary conditions at y = 0 cannot be applied directly since
equations (K.15) and (K.16) are singular. Therefore, this boundary
condition is applied at a small distance, y = dd’ from the wave surface.

In order to apply the boundary condition a Taylor series approximation

is made:

GdF'
— —— = '— " =
F 7 0, F GdF 0
at y = 6d
) T
- Gdk -0 - dde -
2 ? 2 (K.21)
F=U, F'=1U", k = 0, e = 0 at large y. (K.22)
In matrix notation the conditions at y = y_ are,

AR e 1 u
Gl

= . (K.23)
o AR %16 0

- e o e



-

where
1 0
= 0 1
R
0 O
| 6 O
0.
O.
AI
o -
0 -
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(K.24)
(K.25)
(K.26)
0
0
(K.27)
0
b
2
(K.28)
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The required solution to equations (K.18)-(K.28) is obtained by
generating a particular solution and eight homogeneous solutions. The
particular solution is chosen to satisfy the known boundary conditions
at y_. The initial vectors needed to generate the eight homogeneous

solutions are obtained in a similar manner described for equation (K.5).
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APPENDIX L
RELATIONSHIP BETWEEN TURBULENT ENERGY

AND VELOCITY GRADIENT AT THE WAVE SURFACE

In this appendix the wave induced kinetic energy is related to
the root mean square level of the fluctuating velocity gradient,
//Ezf /g;. All quantities are made dimensionless with wall parameters.
The fluctuating velocity close to the wave surface is related to the

fluctuating velocity gradient as

Sx
u' = — y. .1
Sx
Therefore,
12
T s!
u'2 = __:X___ y (L.2)
Sx
where
w? = -r_ . (L.3)

Now Rxx can be decomposed into a wave averaged and fluctuating

component
== @ hant e (L.4)
u' XX XX : :
Hence:
= _ 1n e
u' = (—RXX) - '2- (_ﬁ )1/2 ’ (L-S)
XX
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5 ;xx lax
where - — 17 © is the wave
2(-R_.)
induced component of, vy 3;2 /§; . The turbulent kinetic energy
K is related to u'2 as follows
2 2
1] ] r
K = u + v + w . (L.6)
2 -
Rl 2 2
Since < and . << in the neighborhood of the wall
2
u'2
K = o (L.7)
2
The turbulent kinetic energy can be written in terms of a wave averaged
and fluctuating component as
K=K+ ake™ | | (L.8)
Therefore,
/2 1/2<=1/2 1 A iax ‘
u' = 2 K + — kae . (L.9)
21/2 KI72

. Equations (L.5) and (L.9) gives the desired result.



alzelax - _nxx e 2l/2 El/Z qel0¥
2 (-Rxx)
or
-ar
Real (afceia'x) = — 173 l 21/2E1/2 cos (ax + eK)
2(-Rxx)

where ek is the phase angle of the wave induced variation of

/s'—z— -
'Y /Sx.
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(L.10)

(L.11)
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NOMENCLATURE

Dimensionless wave amplitude

Wave amplitude (in.)

Van Driest parameter, see equation(3.47)
Average value of Van Driest parameter

Complex function related to the wave induced component
of the Van Driest Parameter, see equation (3.48.1)

Electrode area (cmz)

Constant associated with K-e Model defined in equation (3.62)
Constant associated with K-e Model defined in equation (3.62)
Constant associated with K-e Model defined in equation (3.64)
Constant associated with K-e Model defined in equation (3.63.2)
Constant associated with K-e Model defined in equation (3.66)
Concentration of diffusing species in bulk (moles/liter)
Diffusion coefficient for mass (cm/sec)

Damping function, see equation (3.35)

Function associated with K-¢ Model

Function associated with K-e Model

Dimensionless complex function related to the wave induced
stream function

Faradays constant (coulombs/equivalent)
Channal height (in.)
Dimensionless metric in the x direction
Diménsionless metric in the y direction
Cathode current (amps)

Dimensionless complex function related to the wave induced
turbulent kinetic energy
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Coefficients defined in equation (3.47)
Lag'parameter defined in eguation (3.53)

Lag parameter defined in equation (3.56)

Lag parameter defined in equation (3.82)
Dimensionless turbulent kinetic energy

Dimensionless wave averaged turbulent kinetic energy
Mass transfer coefficeint defined in equation (4.1)

Dimensionless mixing length; modified for streamline
curvature ’

Dimensionless complex function related to the wave
induced mixing length; modified for curvature

Dimensionless plane shear mixing length

Dimensionless complex function related to the
wave induced plane shear mixing length

Equivalent length of electrode (cm.).
Numbar of electrons transfefred in reaction
Dimensionless instantaneous pressure
Dimensionless fluctuating pressure

Dimensionless complex function related to the
wave induced pressure

Dimensionless time averaged pressure

Dimensionless value of pressure gradient
in x direction

Dimensionless average value of pressure gradient
in x direction

Dimensionless value of pressure gradient
in y direction

Dimensionless average value of pressure gradient
in y direction

Dimensionless trace of Reynolds stress tensor

Dimensionless function related to the wave induced
components of the turbulent stress tensor



Dimensionless components of the turbulent stress tensor

Dimensionless average components of the turbulent
stress tensor

Dimensionless radius'of curvature of streamlines
Channel Reynolds number based on Ub and channel half width

Feedback resistance (ohms.)

Dimensionless curvature Richardson number defined
on equation (3.80)

Dimensionless complex function associated with the
wave induced Richardson number

Dimensionless composite term representing turbulent
stress terms, see equation (3.14)

Dimensionless fluctuating component of velocity
gradient at the wall

Dimensionless complex function related to the wave
induced rate of stress tensor

Dimensionless components of the rate of strain tensbf
Dimensionless average rate of strain

Dimensionless velocity gradient at the wall
Dimensionless wave averaged velocity gradient at the wall
Dimensionless instantaneous velocity in x direction

Dimensionless fluctuating component of turbulent
velocity in x direction

Dimensionless complex function related to the wave
induced velocity in the x direction

Friction velocity (ft/sec)

Dimensionless time averaged velocity in the x direction
Dimensionless wave averaged velocity in the x direction
Bulk average channel velocity (cm/sec)

Dimensionless instantaneous velocity in the y direction
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Dimensionless fluctuating component of turbulent

velocity in the y direction

Dimensionless complex function related to the wave
induced velocity in the y direction

Dimensionless time averaged velocity in the y direction
Applied voltage (volts)

Instantaneous measured voltage (volts)

Dimensionless boundary layer coordinate along wévé

Dimensionless boundary layer coordinate perpendicular
to wave

Dimensionless wave number

Coefficient defined in equation (3.80)
Coefficient defined in equation (3.91)
Boundary layer thickness

Small distance from wave surface defined
in equation (3.78.1) '

Dimensionless complex function associated with wave
induced turbulent dissipation rate

Dimensionless turbulent dissipation rate
Dimensionless average turbulent dissipation rate
Phase angle (©)

Curvature of wave surface

Von Karman constant used in equations (3.35),
(3.41), (3.43), (3.50), (3.58), (3.71), (3.86)
and (3.39)

Wave length (in.)

Viscosity of fluid (poise)

Kinematic viscosity (cm2/sec)
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Turbulent viscosity (cmz/sec)

Complex function related to the wave induced turbul
viscosity (cm/sec)

Average turbulent viscosity (cm/sec)

Coefficient defined in equation (3.89)

Density of fluid (gm/cm3)

Dimensionless

Dimensionless
induced shear

Dimensionless
Dimensionless
Dimensionless
Dimensionless
Instantaneous

Time averaged

.

shear stress

complex function related to the wave
stress

wave averaged shear stress

wall shear stress

wave averaged wall shear stress

fluctuating shear stress in x direction
2

wall shear stress (dynes/cm”)

wall shear stress (dynes/cmz)

Fluctuating component of turbulent shear stress in
the x direction (dynes/cm?2)

Dimensionless

stream function

ent
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